Skip to content

Commit 6f2d6f7

Browse files
Move files for special numbers to own directory (TheAlgorithms#10714)
1 parent 1976048 commit 6f2d6f7

15 files changed

+310
-310
lines changed
Original file line numberDiff line numberDiff line change
@@ -1,98 +1,98 @@
1-
"""
2-
An Armstrong number is equal to the sum of its own digits each raised to the
3-
power of the number of digits.
4-
5-
For example, 370 is an Armstrong number because 3*3*3 + 7*7*7 + 0*0*0 = 370.
6-
7-
Armstrong numbers are also called Narcissistic numbers and Pluperfect numbers.
8-
9-
On-Line Encyclopedia of Integer Sequences entry: https://oeis.org/A005188
10-
"""
11-
PASSING = (1, 153, 370, 371, 1634, 24678051, 115132219018763992565095597973971522401)
12-
FAILING: tuple = (-153, -1, 0, 1.2, 200, "A", [], {}, None)
13-
14-
15-
def armstrong_number(n: int) -> bool:
16-
"""
17-
Return True if n is an Armstrong number or False if it is not.
18-
19-
>>> all(armstrong_number(n) for n in PASSING)
20-
True
21-
>>> any(armstrong_number(n) for n in FAILING)
22-
False
23-
"""
24-
if not isinstance(n, int) or n < 1:
25-
return False
26-
27-
# Initialization of sum and number of digits.
28-
total = 0
29-
number_of_digits = 0
30-
temp = n
31-
# Calculation of digits of the number
32-
number_of_digits = len(str(n))
33-
# Dividing number into separate digits and find Armstrong number
34-
temp = n
35-
while temp > 0:
36-
rem = temp % 10
37-
total += rem**number_of_digits
38-
temp //= 10
39-
return n == total
40-
41-
42-
def pluperfect_number(n: int) -> bool:
43-
"""Return True if n is a pluperfect number or False if it is not
44-
45-
>>> all(armstrong_number(n) for n in PASSING)
46-
True
47-
>>> any(armstrong_number(n) for n in FAILING)
48-
False
49-
"""
50-
if not isinstance(n, int) or n < 1:
51-
return False
52-
53-
# Init a "histogram" of the digits
54-
digit_histogram = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
55-
digit_total = 0
56-
total = 0
57-
temp = n
58-
while temp > 0:
59-
temp, rem = divmod(temp, 10)
60-
digit_histogram[rem] += 1
61-
digit_total += 1
62-
63-
for cnt, i in zip(digit_histogram, range(len(digit_histogram))):
64-
total += cnt * i**digit_total
65-
66-
return n == total
67-
68-
69-
def narcissistic_number(n: int) -> bool:
70-
"""Return True if n is a narcissistic number or False if it is not.
71-
72-
>>> all(armstrong_number(n) for n in PASSING)
73-
True
74-
>>> any(armstrong_number(n) for n in FAILING)
75-
False
76-
"""
77-
if not isinstance(n, int) or n < 1:
78-
return False
79-
expo = len(str(n)) # the power that all digits will be raised to
80-
# check if sum of each digit multiplied expo times is equal to number
81-
return n == sum(int(i) ** expo for i in str(n))
82-
83-
84-
def main():
85-
"""
86-
Request that user input an integer and tell them if it is Armstrong number.
87-
"""
88-
num = int(input("Enter an integer to see if it is an Armstrong number: ").strip())
89-
print(f"{num} is {'' if armstrong_number(num) else 'not '}an Armstrong number.")
90-
print(f"{num} is {'' if narcissistic_number(num) else 'not '}an Armstrong number.")
91-
print(f"{num} is {'' if pluperfect_number(num) else 'not '}an Armstrong number.")
92-
93-
94-
if __name__ == "__main__":
95-
import doctest
96-
97-
doctest.testmod()
98-
main()
1+
"""
2+
An Armstrong number is equal to the sum of its own digits each raised to the
3+
power of the number of digits.
4+
5+
For example, 370 is an Armstrong number because 3*3*3 + 7*7*7 + 0*0*0 = 370.
6+
7+
Armstrong numbers are also called Narcissistic numbers and Pluperfect numbers.
8+
9+
On-Line Encyclopedia of Integer Sequences entry: https://oeis.org/A005188
10+
"""
11+
PASSING = (1, 153, 370, 371, 1634, 24678051, 115132219018763992565095597973971522401)
12+
FAILING: tuple = (-153, -1, 0, 1.2, 200, "A", [], {}, None)
13+
14+
15+
def armstrong_number(n: int) -> bool:
16+
"""
17+
Return True if n is an Armstrong number or False if it is not.
18+
19+
>>> all(armstrong_number(n) for n in PASSING)
20+
True
21+
>>> any(armstrong_number(n) for n in FAILING)
22+
False
23+
"""
24+
if not isinstance(n, int) or n < 1:
25+
return False
26+
27+
# Initialization of sum and number of digits.
28+
total = 0
29+
number_of_digits = 0
30+
temp = n
31+
# Calculation of digits of the number
32+
number_of_digits = len(str(n))
33+
# Dividing number into separate digits and find Armstrong number
34+
temp = n
35+
while temp > 0:
36+
rem = temp % 10
37+
total += rem**number_of_digits
38+
temp //= 10
39+
return n == total
40+
41+
42+
def pluperfect_number(n: int) -> bool:
43+
"""Return True if n is a pluperfect number or False if it is not
44+
45+
>>> all(armstrong_number(n) for n in PASSING)
46+
True
47+
>>> any(armstrong_number(n) for n in FAILING)
48+
False
49+
"""
50+
if not isinstance(n, int) or n < 1:
51+
return False
52+
53+
# Init a "histogram" of the digits
54+
digit_histogram = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
55+
digit_total = 0
56+
total = 0
57+
temp = n
58+
while temp > 0:
59+
temp, rem = divmod(temp, 10)
60+
digit_histogram[rem] += 1
61+
digit_total += 1
62+
63+
for cnt, i in zip(digit_histogram, range(len(digit_histogram))):
64+
total += cnt * i**digit_total
65+
66+
return n == total
67+
68+
69+
def narcissistic_number(n: int) -> bool:
70+
"""Return True if n is a narcissistic number or False if it is not.
71+
72+
>>> all(armstrong_number(n) for n in PASSING)
73+
True
74+
>>> any(armstrong_number(n) for n in FAILING)
75+
False
76+
"""
77+
if not isinstance(n, int) or n < 1:
78+
return False
79+
expo = len(str(n)) # the power that all digits will be raised to
80+
# check if sum of each digit multiplied expo times is equal to number
81+
return n == sum(int(i) ** expo for i in str(n))
82+
83+
84+
def main():
85+
"""
86+
Request that user input an integer and tell them if it is Armstrong number.
87+
"""
88+
num = int(input("Enter an integer to see if it is an Armstrong number: ").strip())
89+
print(f"{num} is {'' if armstrong_number(num) else 'not '}an Armstrong number.")
90+
print(f"{num} is {'' if narcissistic_number(num) else 'not '}an Armstrong number.")
91+
print(f"{num} is {'' if pluperfect_number(num) else 'not '}an Armstrong number.")
92+
93+
94+
if __name__ == "__main__":
95+
import doctest
96+
97+
doctest.testmod()
98+
main()
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.

0 commit comments

Comments
 (0)