-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathlinearize_test.py
400 lines (325 loc) · 10.5 KB
/
linearize_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
import linearize as linearize_lib
import pytest
import util
import unittest
import os, sys, time
import inspect
import numpy as np
import tensorflow as tf
import pdb
import math
import pprint
from toposort import toposort
import resnet_model
from tensorflow.core.protobuf import rewriter_config_pb2
os.environ['CUDA_VISIBLE_DEVICES']=''
def test_print():
"""Should print:
leaf1 -> merge1
leaf0 -> merge0
merge1 -> merge2
merge0 -> merge1
leaf2 -> merge2
leaf0/shape -> leaf0
leaf1/shape -> leaf1
leaf2/shape -> leaf2
"""
tf.reset_default_graph()
nodes = util.make_caterpillar_graph(length=2)
linearize_lib.print_graph(linearize_lib.get_graph())
def test_toposort():
tf.reset_default_graph()
nodes = util.make_caterpillar_graph(length=2)
graph = linearize_lib.get_graph()
initial = list(toposort(graph))[0]
assert len(initial) == 1
assert list(initial)[0].name == 'merge2'
def test_golden_order():
tf.reset_default_graph()
n = 5
nodes = util.make_chain_tanh(n)
a0 = nodes[0]
a = nodes[-1]
grad = tf.gradients([a], [a0])[0]
order = linearize_lib.linearize(modify_graph=False)
golden_order = ['a00/read', 'a01', 'a02', 'a03', 'gradients/Shape', 'gradients/grad_ys_0', 'gradients/Fill', 'a04', 'gradients/a04_grad/TanhGrad', 'gradients/a03_grad/TanhGrad', 'gradients/a02_grad/TanhGrad', 'gradients/a01_grad/TanhGrad', 'ones']
observed_order = [n.name for n in order]
assert observed_order == golden_order
def test_chain_linearize():
tf.reset_default_graph()
n = 5
nodes = util.make_chain_tanh_constant(n)
a0 = nodes[0]
a = nodes[-1]
order1 = linearize_lib.obtain_linear_order()
observed_order1 = [n.name for n in order1]
num_new_deps = linearize_lib.linearize()
assert num_new_deps == 0
def test_caterpillar_linearize():
tf.reset_default_graph()
n = 5
nodes = util.make_caterpillar_graph(n)
a0 = nodes[0]
a = nodes[-1]
grad = tf.gradients([a], [a0])[0]
print(tf.get_default_graph().as_graph_def())
order1 = linearize_lib.obtain_linear_order()
observed_order1 = [n.name for n in order1]
g = tf.get_default_graph()
# g.version should track if graph was modified, but it doesn't
# https://github.com/tensorflow/tensorflow/issues/14233
num_new_deps = linearize_lib.linearize()
assert num_new_deps > 0
order2 = linearize_lib.obtain_linear_order()
observed_order2 = [n.name for n in order2]
assert observed_order1 == observed_order2
num_new_deps = linearize_lib.linearize()
assert num_new_deps == 0
def test_targets():
tf.reset_default_graph()
n = 5
g = tf.get_default_graph()
nodes1 = util.make_chain_tanh_constant(n, "a")
nodes2 = util.make_chain_tanh_constant(n, "b")
a0,b0 = nodes1[0], nodes2[0]
a, b = nodes1[-1], nodes2[-1]
grad1 = tf.gradients([a], [a0, b0])
grad2 = tf.gradients([b], [a0, b0])
assert linearize_lib.linearize(grad1) == 3
old_version = g._version
assert linearize_lib.linearize(grad1) == 0
assert g._version == old_version
assert linearize_lib.linearize(grad2) == 3
assert linearize_lib.linearize(grad2) == 0
def test_variables():
tf.reset_default_graph()
a = tf.Variable(1.)
b = tf.square(a)
c = tf.tanh(b)
linearize_lib.linearize(c)
assert b.op.control_inputs == [] # no control dependency on var initializer
def run_all_tests(module):
all_functions = inspect.getmembers(module, inspect.isfunction)
for name,func in all_functions:
if name.endswith("_test"):
print("Testing "+name)
with timeit():
func()
print(module.__name__+" tests passed.")
def _create_session():
optimizer_options = tf.OptimizerOptions(opt_level=tf.OptimizerOptions.L0)
config = tf.ConfigProto(operation_timeout_in_ms=3000, graph_options=tf.GraphOptions(optimizer_options=optimizer_options))
config.graph_options.rewrite_options.constant_folding = rewriter_config_pb2.RewriterConfig.OFF
config.graph_options.place_pruned_graph = True
return tf.Session(config=config)
def _create_cifar_resnet_loss():
"""Creates loss tensor for resnet model."""
HEIGHT = 32
WIDTH = 32
DEPTH = 3
NUM_CLASSES = 10
BATCH_SIZE=1
_WEIGHT_DECAY = 2e-4
_INITIAL_LEARNING_RATE = 0.1 * BATCH_SIZE / 128
_MOMENTUM = 0.9
RESNET_SIZE=8
images = tf.random_uniform((BATCH_SIZE, HEIGHT, WIDTH, DEPTH))
labels = tf.random_uniform((BATCH_SIZE, NUM_CLASSES))
# channels_last for CPU
network = resnet_model.tiny_cifar10_resnet_v2_generator(RESNET_SIZE, NUM_CLASSES, data_format='channels_last')
inputs = tf.reshape(images, [BATCH_SIZE, HEIGHT, WIDTH, DEPTH])
logits = network(inputs,True)
cross_entropy = tf.losses.softmax_cross_entropy(logits=logits,
onehot_labels=labels)
l2_penalty = tf.add_n([tf.nn.l2_loss(v) for v in tf.trainable_variables()])
loss = cross_entropy + _WEIGHT_DECAY * l2_penalty
return loss
def _create_imagenet_resnet_loss():
"""Creates loss tensor for resnet model."""
BATCH_SIZE=2
RESNET_SIZE=18 # 200 # 18, 34 , 50 , 101, 152, 200
# RESNET_SIZE=34 # 200 # 18, 34 , 50 , 101, 152, 200
HEIGHT=224
WIDTH=224
_INITIAL_LEARNING_RATE = 0.1 * BATCH_SIZE / 128
_MOMENTUM = 0.9
DEPTH = 3
NUM_CLASSES = 1001
images = tf.random_uniform((BATCH_SIZE, HEIGHT, WIDTH, DEPTH))
labels = tf.random_uniform((BATCH_SIZE, NUM_CLASSES))
network = resnet_model.tiny_resnet_v2(resnet_size=RESNET_SIZE, num_classes=NUM_CLASSES)
inputs = tf.reshape(images, [BATCH_SIZE, HEIGHT, WIDTH, DEPTH])
logits = network(inputs,False)
cross_entropy = tf.losses.softmax_cross_entropy(logits=logits,
onehot_labels=labels)
return cross_entropy
def test_cifar_resnet_unmodifed():
tf.reset_default_graph()
tf.set_random_seed(1)
ctx = tf.device("/cpu:0")
ctx.__enter__()
loss = _create_cifar_resnet_loss()
sess = _create_session()
sess.run(tf.global_variables_initializer())
loss0 = sess.run(loss)
expected_loss0 = 20 # 9.0879955
assert loss0-expected_loss0<1e-3
def test_imagenet_resnet_grads():
tf.reset_default_graph()
tf.set_random_seed(1)
loss = _create_imagenet_resnet_loss()
sess = _create_session()
sess.run(tf.global_variables_initializer())
loss0 = sess.run(loss)
grads = tf.gradients(loss, tf.trainable_variables())
linearize_lib.linearize(grads)
grads0 = sess.run(grads)
print(grads0[0][0,0,0,0]) # -0.00288249
expected_loss0 = 3423.3474
assert abs(loss0-expected_loss0)<1e-3
def test_cifar_resnet_loss():
tf.reset_default_graph()
tf.set_random_seed(1)
ctx = tf.device("/cpu:0")
ctx.__enter__()
loss = _create_cifar_resnet_loss()
linearize_lib.linearize(loss)
sess = _create_session()
sess.run(tf.global_variables_initializer())
loss0 = sess.run(loss)
expected_loss0 = 20 # 9.0879955 #12.3753
print(expected_loss0)
assert loss0-expected_loss0<1e-3
def test_cifar_resnet_grads():
tf.reset_default_graph()
tf.set_random_seed(1)
ctx = tf.device("/cpu:0")
ctx.__enter__()
loss = _create_cifar_resnet_loss()
grads = tf.gradients(loss, tf.trainable_variables())
linearize_lib.linearize(grads)
sess = _create_session()
sess.run(tf.global_variables_initializer())
grads0 = sess.run(grads)
# test below is just change detector, remove
# assert 0.0622041-grads0[0][0][0,0,0]) < 1e-5
def test_reversed_graph():
tf.reset_default_graph()
a = tf.constant([1,2,3])
c = tf.constant([4,5,6])
result = tf.nn.top_k(a)
b = result[0]+result[1]+c
d = tf.constant([7,8,9])
graph = linearize_lib.get_graph()
# graph looks like this
"""Const -> TopKV2
Const_1 -> add_1
Const_2
TopKV2 -> add
TopKV2/k -> TopKV2
add -> add_1
add_1
"""
nodes = list(graph.keys())
assert nodes[0].name == 'Const'
assert nodes[-1].name == 'add_1'
assert list(graph[nodes[0]])[0].name == 'TopKV2'
graph = linearize_lib.reversed_graph(graph, deterministic=True)
# graph looks like this
"""TopKV2 -> Const
TopKV2 -> TopKV2/k
Const
add_1 -> Const_1
add_1 -> add
Const_1
add -> TopKV2
TopKV2/k
Const_2
"""
nodes = list(graph.keys())
assert nodes[0].name == 'TopKV2'
assert nodes[-1].name == 'Const_2'
assert list(graph[nodes[0]])[0].name == 'Const'
def test_dependent_targets_easy():
tf.reset_default_graph()
a = tf.constant([1,2,3], name='a')
c = tf.constant([4,5,6], name='c')
result = tf.nn.top_k(a, name='result')
b = result[0]+result[1]+c
d = tf.constant([7,8,9])
linearize_lib.linearize([b, c])
sess = _create_session()
assert list(sess.run(b)) == [9, 10, 11]
def test_dependent_targets():
tf.reset_default_graph()
a = tf.constant([1], name='a')
c = tf.constant([4], name='c')
result = tf.nn.top_k(a, name='result')
b = tf.add_n([result[0],result[1],c],name='b')
d = tf.constant([7], name='d')
linearize_lib.linearize([b, c])
sess = _create_session()
assert list(sess.run(b)) == [5]
def test_prune():
tf.reset_default_graph()
a = tf.constant([1,2,3])
b = tf.constant([4,5,6])
c = a + b
d = tf.constant([7,8,9])
e = tf.constant([7,8,9])
graph = linearize_lib.get_graph()
pruned = linearize_lib.prune_graph(graph, [c, d])
assert a.op in pruned
assert e.op not in pruned
def _make_simple_caterpillar_graph(length=5, node_mbs=1):
"""Length is number of concats."""
def make_leaf(i):
name = "leaf"+str(i)
val = tf.constant(1)
return val
def make_merge(a, b, i):
name = "merge"+str(i)
merge_node = tf.add(a, b, name=name)
return merge_node
leaf0 = make_leaf(0)
node0 = tf.identity(leaf0, name="merge0")
node = node0
nodes = [node]
for i in range(1, length+1):
leaf = make_leaf(i)
node = make_merge(node, leaf, i)
nodes.append(node)
return nodes
def test_articulation_points():
tf.reset_default_graph()
n = 5
nodes = util.make_chain_tanh_constant(n)
a0 = nodes[0]
a = nodes[-1]
points = linearize_lib.sorted_articulation_points(None)
# original list is ['a00', 'a01', 'a02', 'a03', 'a04']
# end-points are not considered separators, so result should be
assert util.format_ops(points) == ['a01', 'a02', 'a03']
tf.reset_default_graph()
n = 5
nodes = _make_simple_caterpillar_graph(n)
a0 = nodes[0]
a = nodes[-1]
points = linearize_lib.sorted_articulation_points(None)
assert util.format_ops(points) == ['merge0', 'merge1', 'merge2',
'merge3', 'merge4', 'merge5']
if __name__=='__main__':
test_imagenet_resnet_grads()
test_toposort()
sys.exit()
test_articulation_points()
test_toposort()
test_golden_order()
# test_variables()
# test_imagenet_resnet_grads()
test_cifar_resnet_grads()
# test_reversed_graph()
# test_prune()
# test_dependent_targets()
# todo:
#