-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualization.py
130 lines (108 loc) · 5.25 KB
/
visualization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import os
import numpy as np
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.pyplot as plt
import matplotlib.style
def save_images(imgs, filename, title, n_cols=4, crange=(-1.0, 1.0), abs=False, show_patches=False):
mpl.style.use('classic')
fontsize = 28
fontname = 'Times New Roman'
plt.rc('xtick', labelsize=fontsize)
plt.rc('ytick', labelsize=fontsize)
plt.rc('font', family=fontname)
title_font = {'fontname':fontname, 'size':fontsize, 'color':'black',
'verticalalignment':'bottom'}
axis_font = {'fontname':fontname, 'size':fontsize}
shape = imgs.shape
dim = len(shape)
min_val, max_val = crange
n_samples = len(imgs)
n_rows = n_samples // n_cols
if type(imgs) != np.ndarray:
if imgs.device == 'cpu':
imgs = imgs.numpy()
else:
imgs = imgs.cpu().numpy()
if abs:
imgs = np.abs(imgs)
if dim == 3:
# Unpatched
fig, axes = plt.subplots(n_rows, n_cols, figsize=(12,12), subplot_kw={'xticks':[], 'yticks':[]},
gridspec_kw=dict(hspace=0.1, wspace=0.1))
for i, ax in np.ndenumerate(axes.ravel()):
if abs:
im = ax.imshow(imgs[i], cmap='jet', origin = 'lower', vmin = min_val, vmax=max_val)
else:
im = ax.imshow(imgs[i], cmap='seismic', origin = 'lower', vmin = min_val, vmax=max_val)
fig.colorbar(im, ax=axes.ravel().tolist())
fig.suptitle(title, **title_font, y=0.9)
fig.savefig(filename)
plt.close('all')
else:
# Patched
n_patch_y, n_patch_x, ny_in_patch, nx_in_patch = shape[1], shape[2], shape[3], shape[4]
ny, nx = ny_in_patch * n_patch_y, nx_in_patch * n_patch_x
reshaped_data = np.zeros((n_samples, ny, nx))
fig, axes = plt.subplots(n_rows, n_cols, figsize=(12,12), subplot_kw={'xticks':[], 'yticks':[]},
gridspec_kw=dict(hspace=0.1, wspace=0.1))
slice_unpatch = [slice(None)]*3
patched_lines = []
for iy_in_patch in range(n_patch_y):
for ix_in_patch in range(n_patch_x):
x_start = ix_in_patch * nx_in_patch
y_start = iy_in_patch * ny_in_patch
slice_unpatch[1] = slice(y_start, y_start+ny_in_patch)
slice_unpatch[2] = slice(x_start, x_start+nx_in_patch)
reshaped_data[tuple(slice_unpatch)] = imgs[:,iy_in_patch,ix_in_patch,:,:]
# Append vertical lines
if ix_in_patch != 0:
vertical_line = ([x_start, x_start], [0, ny-1])
patched_lines.append(vertical_line)
# Append horizontal lines
if iy_in_patch != 0:
horizontal_line = ([0, nx-1], [y_start, y_start])
patched_lines.append(horizontal_line)
for i, ax in np.ndenumerate(axes.ravel()):
if abs:
im = ax.imshow(reshaped_data[i], cmap='jet', origin = 'lower', vmin = min_val, vmax=max_val)
else:
im = ax.imshow(reshaped_data[i], cmap='seismic', origin = 'lower', vmin = min_val, vmax=max_val)
if show_patches:
for line in patched_lines:
x_range, y_range = line
ax.plot(x_range, y_range, '--k', lw=0.5)
ax.set_xlim(0, nx)
ax.set_ylim(0, ny)
fig.colorbar(im, ax=axes.ravel().tolist())
fig.suptitle(title, **title_font, y=0.9)
fig.savefig(filename)
plt.close('all')
def save_flows(flows, name, img_dir, type_name, level, epoch, abs=False, show_patches=False):
to_abs = True if type_name == 'error' else False
crange = (-1.0, 1.0)
batch_len = len(flows)
n_cols = int(np.sqrt(batch_len+0.001))
if to_abs:
u_title = r"{} $\vert u \vert$ (Lv{}) epoch {:03}".format(type_name, level, epoch)
v_title = r"{} $\vert v \vert$ (Lv{}) epoch {:03}".format(type_name, level, epoch)
crange = (0.0, 1.0)
else:
u_title = r"{} $u$ (Lv{}) epoch {:03}".format(type_name, level, epoch)
v_title = r"{} $v$ (Lv{}) epoch {:03}".format(type_name, level, epoch)
shape = flows.shape
dim = len(shape)
if dim == 4:
save_images(flows[:, 0, :, :],
f"{img_dir}/{name}_Lv{level}/{name}_{type_name}_Lv{level}_u_epoch_{epoch:03}.png",
u_title, n_cols=n_cols, crange=crange, abs=to_abs, show_patches=show_patches)
save_images(flows[:, 1, :, :],
f"{img_dir}/{name}_Lv{level}/{name}_{type_name}_Lv{level}_v_epoch_{epoch:03}.png",
v_title, n_cols=n_cols, crange=crange, abs=to_abs, show_patches=show_patches)
else:
save_images(flows[:, :, :, 0],
f"{img_dir}/{name}_Lv{level}/{name}_{type_name}_Lv{level}_u_epoch_{epoch:03}.png",
u_title, n_cols=n_cols, crange=crange, abs=to_abs, show_patches=show_patches)
save_images(flows[:, :, :, 1],
f"{img_dir}/{name}_Lv{level}/{name}_{type_name}_Lv{level}_v_epoch_{epoch:03}.png",
v_title, n_cols=n_cols, crange=crange, abs=to_abs, show_patches=show_patches)