-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbacktrackingSearch.py
193 lines (161 loc) · 7.05 KB
/
backtrackingSearch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import copy
from CSP import *
from random import shuffle
from graphics import *
from featureExtractor import *
from regression import *
import json
import csv
from util import *
import time
start = time.time()
class BacktrackingSearch:
def __init__(self):
with open('Weights.csv', 'r') as f:
reader = csv.reader(f)
weights = list(reader)
weights = weights[0]
for i in range(len(weights)):
weights[i] = float(weights[i])
self.weights = weights
self.regression = Regression("Database.txt")
self.featureExtractor = FeatureExtractorUtil()
def backtrackingSearch(self, csp):
return self.backTrackingSearchWithHeuristic({}, csp.variables, csp.domains, csp.constraints, 0)
def recursiveBackTrackingSearch(self, assignment, variables, domains, constraints, nodesExpanded):
if self.assignmentComplete(assignment, variables):
return (assignment, nodesExpanded)
next_var = self.chooseVariable(assignment, variables)
#best approach probably to merge items in each domain list.
for domainList in domains[next_var]:
#could do an argmax here to make the best possible assignment/ q-learning here
"""Some sort of regression choosing should go here"""
"""*************************************"""
#a = json.dumps(assignment)
#hypothesis = evaluate(weights, FeatureExtractorUtil().extractFeatures(a))
"""*************************************"""
#can also randomize values picked here, as well as the domainList picked.
domainList = list(domainList)
shuffle(domainList)
for next_val in domainList:
nodesExpanded +=1
assignment[next_var] = next_val
#print("****************next_val********************")
#print(next_val)
old_domains = self.createDeepCopy(domains)
if self.validAssignment(assignment, constraints):
#print("*********validAssignment next_val{}".format(next_val))
##print("next_val{}".format(next_val))
self.updateDomains(assignment, variables, domains, next_val)
if self.noEmptyDomain(domains):
result = self.recursiveBackTrackingSearch(assignment, variables, domains, constraints, nodesExpanded)
if result is not None:
return (result[0], result[1])
del assignment[next_var]
#print("****backtracked next_val{}, next_var{}".format(next_val, next_var))
domains = old_domains
return None
def backTrackingSearchWithHeuristic(self, assignment, variables, domains, constraints, nodesExpanded):
if self.assignmentComplete(assignment, variables):
return (assignment, nodesExpanded)
next_var = self.chooseVariable(assignment, variables)
domain = PriorityQueue()
for domainList in domains[next_var]:
for domain_val in domainList:
assignment[next_var] = domain_val
#print("assignment {}".format(assignment))
features = self.featureExtractor.extractFeatures(assignment)
hypothesis = self.regression.evaluate(self.weights, features)
#print("domain {}, hypothesis{}".format(domain_val, hypothesis))
domain.push(domain_val, hypothesis)
del assignment[next_var]
while not domain.isEmpty():
next_val = domain.pop()
nodesExpanded +=1
assignment[next_var] = next_val
#print("****************next_val********************")
#print(next_val)
old_domains = self.createDeepCopy(domains)
if self.validAssignment(assignment, constraints):
#print("*********validAssignment next_val{}".format(next_val))
##print("next_val{}".format(next_val))
self.updateDomains(assignment, variables, domains, next_val)
if self.noEmptyDomain(domains):
result = self.backTrackingSearchWithHeuristic(assignment, variables, domains, constraints, nodesExpanded)
if result is not None:
return (result[0], result[1])
del assignment[next_var]
#print("****backtracked next_val{}, next_var{}".format(next_val, next_var))
domains = old_domains
return None
def assignmentComplete(self, assignment, variables):
for var in variables:
if var not in assignment:
return False
return True
def chooseVariable(self, assignment, variables):
for var in variables:
if var not in assignment:
return var
return None
def validAssignment(self, assignment, constraints):
return constraints(assignment)
def updateDomains(self, assignment, variables, domains, next_val):
##print("********domains{}".format(domains))
var_for_domain_update = self.chooseVariable(assignment, variables)
if var_for_domain_update == None:
return
# #print("********var_for_domain_update{}".format(var_for_domain_update))
# #print("********next_val{}".format(next_val))
domainMapVal = domains[var_for_domain_update]
newDomainMapVal = []
for domainList in domainMapVal:
if domainList[0][0] == next_val[1]:
newDomainMapVal.append(domainList)
domains[var_for_domain_update] = newDomainMapVal
return
def noEmptyDomain(self, domains):
##print(domains)
for key in domains:
if len(domains[key]) == 0:
# #print("returning False")
return False
return True
def createDeepCopy(self, domains):
newDomain = {}
for key in domains:
newValue = []
value = domains[key]
for domainList in value:
newDomainList = []
for domain in domainList:
newDomainList.append(domain)
newValue.append(newDomainList)
newDomain[key] = newValue
return newDomain
backTrackSearch =BacktrackingSearch()
csp = CSP(10, 0)
start = time.time()
result = backTrackSearch.backtrackingSearch(csp)
print(result)
print(time.time() - start)
StructureVisual().drawStructure(result[0])
# csp = CSP(10, 0)
# finalMap = {}
# for i in range(50):
# result = backTrackSearch.backtrackingSearch(csp)
# finalMap[i] = result[1]
# print(finalMap)
# file = open('testData.txt', 'a')
# file.write(json.dumps(finalMap))
# file.close()
##print(csp.domains)
# assignment = backtrackingSearch(csp)
# #print("\n\n\n\n\n\n\n\n*******************************************")
# #print(assignment)
# if assignment is not None:
# file = open('Database.txt', 'a')
# file.write("\n")
# file.write(json.dumps(assignment))
# file.close()
# StructureVisual().drawStructure(assignment)