-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcross_validation.py
35 lines (28 loc) · 1 KB
/
cross_validation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from utils import initialize
# 1. Choose Test Ratio : 0.1 ~ 0.3
# 2. Choose Model : LinearRegression / KnnRegression / DecisionTreeRegression / RandomForestRegression
test_ratio = 0.2
models = ['LinearRegression', 'KnnRegression', 'DecisionTreeRegression', 'RandomForestRegression']
N = 10
max_acc = 0
max_model = ''
# Load dataset and model
for model_name in models:
avg_acc = 0
for i in range(N):
test_data, train_data, model = initialize(test_ratio, model_name)
train_x, train_y = train_data
num_data, num_features = train_x.shape
print('# of Training data : ', num_data)
# TRAIN
model.train(train_x, train_y)
# EVALUATION
test_x, test_y = test_data
accuracy = model.test(test_x, test_y)
avg_acc += accuracy
avg_acc /= N
print(model_name, "test file accuracy:", avg_acc)
if avg_acc > max_acc:
max_acc = avg_acc
max_model = model_name
print('[final]', max_model, "is best model. accuracy: ", max_acc)