forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_functional_collectives.py
1149 lines (935 loc) · 41.2 KB
/
_functional_collectives.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# mypy: allow-untyped-defs
import sys
import warnings
from typing import cast, List, Optional, Tuple, TYPE_CHECKING, Union
import torch
import torch.distributed as dist
import torch.distributed.distributed_c10d as c10d
from torch.distributed.device_mesh import DeviceMesh
from torch.fx.experimental.proxy_tensor import get_innermost_proxy_mode
from . import _functional_collectives_impl as fun_col_impl
try:
from torch.utils._cxx_pytree import tree_map_only
except ImportError:
from torch.utils._pytree import tree_map_only # type: ignore[no-redef]
if torch._running_with_deploy():
def is_torchdynamo_compiling():
"""Can't import torchdynamo in torchdeploy builds currently."""
return False
else:
try:
from torch.compiler import is_dynamo_compiling as is_torchdynamo_compiling
except Exception:
warnings.warn(
"Unable to import torchdynamo util `is_torchdynamo_compiling`, so won't support torchdynamo correctly"
)
def is_torchdynamo_compiling():
return False
"""
New traceable, functional collectives.
RFC: https://github.com/pytorch/pytorch/issues/93173
compiler: trace these ops with plain-old-data schemas, then choose how to lower them.
eager: execute these 'functional' ops which in eager return AsyncCollectiveTensor subclasses,
automatically calling .wait() on underlying/hidden async 'work' obj only when fed to
a downstream op.
Issues:
* Where should these ops live? Couldn't `import torch` if putting these ops in existing torch.distributed files
* Proper support for eager requires inplace ops. We should explore having it as an option for the API.
"""
"""
Functional collectives are asynchronous only and we perform implicit stream synchronization
on behalf of the user.
We use AsyncCollectiveTensor to wrap the result tensor of a collective and it lets us witness
first usage of the tensor and insert cross stream sync at the right place.
The above are the easy bits, the hard one is how we match the Work object returned by
c10d and the tensor AsyncCollectiveTensor wraps. We alloc the tensor inside the collective
op implementation (see ``clone()`` call in ``_all_reduce``) and then it's handled by the
dispatcher which might call other implementations that are allowed to change the returned
tensor - even return a tensor with a different shape (see ``torch.vmap``).
This means the caller of our ops receives a Tensor that is not guaranteed to be the same
allocated by our implementations and that makes pairing The AsyncTensor to the original
tensor a lot harder. This pairing is needed so we can lookup the Work object to use.
Originally, we tried WeakKeyDictionary to map from Tensor to Work, but because Tensor's
identity is not stable across dispatch, the op caller would end up with a different Tensor
instance that would not match any in the dictionary.
With Tensor identity out of the question, we decided use the tensor data pointer, which
should be stable across all the Tensor changes done during dispatch.
We have a dictionary of tensor::data_ptr -> Work that we insert right after we call into c10d.
We use this dictionary when AsyncCollectiveTensor is used to invoke Work::wait()
Finally, we setup a finalizer against the tensor wrapper to observe it getting collected so we
can clean up stale entries in the dictionary.
To eliminate the possibility of races we have a global version counter that is used by the finalizer.
As a wise man said once: Don't cross the streams (https://www.youtube.com/watch?v=wyKQe_i9yyo)
"""
"""
Functional collectives can accept any of these types to describe the ranks participating in collectives.
The different types will be desugared to a canonical format
"""
RANK_TYPES = Union[
List[int],
List[List[int]],
dist.ProcessGroup,
DeviceMesh,
Tuple["dist._tensor.DeviceMesh", int],
str,
]
"""
User facing APIs for functional collectives
-------------------------------------------
These apis are called by user code and expected to work both in eager execution and compilation,
but there are significant differences to how the two modes are implemented underneath.
Eager execution is 'optimized' using a tensor subclass that schedules the synchronization (via wait_tensor() op)
just before the tensor is first used. Compiled tracing currently relies on the compiler to perform this optimization,
and cannot yet correctly trace the AsyncTensor wrapper class. In the future, these paths may be unified
if sufficient subclass support is added in dynamo.
Example: all_reduce is an entrypoint API, and other collectives follow a similar pattern.
Here's how it works under torch.compile/dynamo:
all_reduce(...)
|--> _expand_group(...) - desugars processgroup into canonical/traceable format
|--> c10d_functional.all_reduce(...) - dynamo captures this op call, doesn't trace deeper
|--> _maybe_wrap_tensor(...) - wait_tensor() op is immediately called, no AsyncTensor subclass needed
And under eager execution:
all_reduce(...)
|--> _expand_group(...) - same as above, but less critical for eager
|--> c10d_functional.all_reduce(...) - dispatches to real kernel OR records op in trace
|--> _maybe_wrap_tensor(...) - AsyncTensor wrapper applied to returned tensor,
which issues wait_tensor() at the time of first use
"""
def wait_tensor(tensor):
"""
Wait on a tensor returned by the collectives ops.
Waiting follows device semantics, which means blocking on CPU and synchronizing streams on CUDA.
"""
return torch.ops._c10d_functional.wait_tensor(tensor) # type: ignore[attr-defined]
def broadcast(self: torch.Tensor, src: int, group: RANK_TYPES, tag: str = ""):
"""
Broadcasts the tensor to all processes in the given process group.
Args:
src (int): Source rank
group (ProcessGroup or List[int]): The process group to work on.
tag (str, optional): A unique identifier for the collective. Default: empty string
"""
group_name = _resolve_group_name(group, tag)
tensor = torch.ops._c10d_functional.broadcast(self, src, group_name)
return _maybe_wrap_tensor(tensor)
def all_reduce(self: torch.Tensor, reduceOp: str, group: RANK_TYPES, tag: str = ""):
"""
Reduces the tensor data across all machines in such a way that all get
the final result.
The input tensor is left unmodified.
Group can be one of:
List[int]: ranks participating in the collective.
List[List[int]]: 2D mesh of ranks taking part of this collective in MPMD.
ProcessGroup: Will perform a collective using the ranks and tag of the PG.
DeviceMesh: Do a SPMD collective over all ranks of the mesh
(DeviceMesh, int): Do a MPMD collective over one dimension of the DeviceMesh
:: N.B. If you pass a PG or a 1D list to perform a MPMD collective, the compiler won't be able to recover
that information and perform collective algebraic optimization. Use other forms of input for that.
"""
group_name = _resolve_group_name(group, tag)
tensor = torch.ops._c10d_functional.all_reduce(self, reduceOp.lower(), group_name)
return _maybe_wrap_tensor(tensor)
def all_gather_tensor(
self: torch.Tensor,
gather_dim: int,
group: RANK_TYPES,
tag: str = "",
):
"""
Gather tensor data across from all machines and concatenate over ``gather_dim``.
Note that it currently only supports gather_dim = 0.
The input tensor is left unmodified.
Group can be one of:
List[int]: ranks participating in the collective.
List[List[int]]: 2D mesh of ranks taking part of this collective in MPMD.
ProcessGroup: Will perform a collective using the ranks and tag of the PG.
DeviceMesh: Do a SPMD collective over all ranks of the mesh
(DeviceMesh, int): Do a MPMD collective over one dimension of the DeviceMesh
:: N.B. If you pass a PG or a 1D list to perform a MPMD collective, the compiler won't be able to recover
that information and perform collective algebraic optimization. Use other forms of input for that.
"""
assert self.is_contiguous()
group_name = _resolve_group_name(group, tag)
group_size = c10d._get_group_size_by_name(group_name)
tensor = torch.ops._c10d_functional.all_gather_into_tensor(
self, group_size, group_name
)
res = _maybe_wrap_tensor(tensor)
# TODO this should be done inside AsyncCollectiveTensor to delay the wait() call
if gather_dim != 0:
# torch.cat access the data so we already need to wait here, first do wait
# and then chunk + cat avoid us going through ACT dispatching logic again
if isinstance(res, AsyncCollectiveTensor):
res = res.wait() # type: ignore[attr-defined]
res = torch.cat(torch.chunk(res, group_size, dim=0), dim=gather_dim)
return res
def all_gather_tensor_autograd(
self: torch.Tensor,
gather_dim: int,
group: RANK_TYPES,
tag: str = "",
):
"""
Gather tensor data across from all machines and concatenate over ``gather_dim``.
Note that it currently only supports gather_dim = 0.
This function is the same as all_gather_tensor but will propagate the
backwards gradient across workers.
See all_gather_tensor for more details on usage.
"""
group_name = _resolve_group_name(group, tag)
group_size = c10d._get_group_size_by_name(group_name)
tensor = torch.ops._c10d_functional_autograd.all_gather_into_tensor(
self, group_size, group_name
)
res = _FromTorchTensor.apply(tensor)
# TODO this should be done inside AsyncCollectiveTensor to delay the wait() call
if gather_dim != 0:
# torch.cat access the data so we already need to wait here, first do wait
# and then chunk + cat avoid us going through ACT dispatching logic again
if isinstance(res, AsyncCollectiveTensor):
res = res.wait() # type: ignore[attr-defined]
res = torch.cat(torch.chunk(res, group_size, dim=0), dim=gather_dim)
return res
def reduce_scatter_tensor(
self: torch.Tensor,
reduceOp: str,
scatter_dim: int,
group: RANK_TYPES,
tag: str = "",
):
"""
Reduces the tensor data across all machines in such a way that all get
the final result, then scatter the results to corresponding ranks.
The input tensor is left unmodified.
Group can be one of:
List[int]: ranks participating in the collective.
List[List[int]]: 2D mesh of ranks taking part of this collective in MPMD.
ProcessGroup: Will perform a collective using the ranks and tag of the PG.
DeviceMesh: Do a SPMD collective over all ranks of the mesh
(DeviceMesh, int): Do a MPMD collective over one dimension of the DeviceMesh
:: N.B. If you pass a PG or a 1D list to perform a MPMD collective, the compiler won't be able to recover
that information and perform collective algebraic optimization. Use other forms of input for that.
"""
group_name = _resolve_group_name(group, tag)
group_size = c10d._get_group_size_by_name(group_name)
assert (
self.size(scatter_dim) % group_size == 0
), f"input dimension 0 ({self.size(0)} must be a multiple of group_size {group_size}"
if scatter_dim != 0:
tensor_list = torch.chunk(self, group_size, dim=scatter_dim)
self = torch.cat(tensor_list)
tensor = torch.ops._c10d_functional.reduce_scatter_tensor(
self,
reduceOp.lower(),
group_size,
group_name, # type: ignore[possibly-undefined]
)
res = _maybe_wrap_tensor(tensor)
return res
def reduce_scatter_tensor_autograd(
self: torch.Tensor,
reduceOp: str,
scatter_dim: int,
group: RANK_TYPES,
tag: str = "",
):
"""
Reduces the tensor data across all machines in such a way that all get
the final result, then scatter the results to corresponding ranks.
This function is the same as reduce_scatter_tensor but will propagate the
backwards gradient across workers.
Currently only the "sum" reduceOp is supported.
See reduce_scatter_tensor for more details on usage.
"""
group_name = _resolve_group_name(group, tag)
group_size = c10d._get_group_size_by_name(group_name)
assert (
self.size(scatter_dim) % group_size == 0
), f"input dimension 0 ({self.size(0)} must be a multiple of group_size {group_size}"
if scatter_dim != 0:
tensor_list = torch.chunk(self, group_size, dim=scatter_dim)
self = torch.cat(tensor_list)
tensor = torch.ops._c10d_functional_autograd.reduce_scatter_tensor(
self,
reduceOp.lower(),
group_size,
group_name, # type: ignore[possibly-undefined]
)
res = _FromTorchTensor.apply(tensor)
return res
def all_reduce_coalesced(
self: List[torch.Tensor], reduceOp: str, group: RANK_TYPES, tag: str = ""
) -> List[torch.Tensor]:
"""
Reduces a list of tensors across all machines in such a way that all get
the final result.
The all tensors in the input list are left unmodified.
Group can be one of:
List[int]: ranks participating in the collective.
List[List[int]]: 2D mesh of ranks taking part of this collective in MPMD.
ProcessGroup: Will perform a collective using the ranks and tag of the PG.
DeviceMesh: Do a SPMD collective over all ranks of the mesh
(DeviceMesh, int): Do a MPMD collective over one dimension of the DeviceMesh
:: N.B. If you pass a PG or a 1D list to perform a MPMD collective, the compiler won't be able to recover
that information and perform collective algebraic optimization. Use other forms of input for that.
"""
group_name = _resolve_group_name(group, tag)
tensor_list = torch.ops._c10d_functional.all_reduce_coalesced( # type: ignore[attr-defined]
self,
reduceOp.lower(),
group_name,
)
return list(map(_maybe_wrap_tensor, tensor_list))
def all_gather_into_tensor_coalesced(
self: List[torch.Tensor], group: RANK_TYPES, tag: str = ""
) -> List[torch.Tensor]:
"""
Gather a list of tensors across from all machines.
Note that it currently only supports gather_dim = 0.
The input tensor is left unmodified.
Group can be one of:
List[int]: ranks participating in the collective.
List[List[int]]: 2D mesh of ranks taking part of this collective in MPMD.
ProcessGroup: Will perform a collective using the ranks and tag of the PG.
DeviceMesh: Do a SPMD collective over all ranks of the mesh
(DeviceMesh, int): Do a MPMD collective over one dimension of the DeviceMesh
:: N.B. If you pass a PG or a 1D list to perform a MPMD collective, the compiler won't be able to recover
that information and perform collective algebraic optimization. Use other forms of input for that.
"""
group_name = _resolve_group_name(group, tag)
group_size = c10d._get_group_size_by_name(group_name)
tensor_list = torch.ops._c10d_functional.all_gather_into_tensor_coalesced( # type: ignore[attr-defined]
self,
group_size,
group_name,
)
return list(map(_maybe_wrap_tensor, tensor_list))
def reduce_scatter_tensor_coalesced(
inputs: List[torch.Tensor],
reduceOp: str,
scatter_dim: List[int],
group: RANK_TYPES,
tag: str = "",
) -> List[torch.Tensor]:
"""
Reduces a list of tensors across all machines in such a way that all get
the final result, then scatter the results to corresponding ranks.
The input tensors are left unmodified.
Group can be one of:
List[int]: ranks participating in the collective.
List[List[int]]: 2D mesh of ranks taking part of this collective in MPMD.
ProcessGroup: Will perform a collective using the ranks and tag of the PG.
DeviceMesh: Do a SPMD collective over all ranks of the mesh
(DeviceMesh, int): Do a MPMD collective over one dimension of the DeviceMesh
:: N.B. If you pass a PG or a 1D list to perform a MPMD collective, the compiler won't be able to recover
that information and perform collective algebraic optimization. Use other forms of input for that.
"""
group_name = _resolve_group_name(group, tag)
group_size = c10d._get_group_size_by_name(group_name)
assert len(scatter_dim) == len(inputs)
for idx, (dim, tensor) in enumerate(zip(scatter_dim, inputs)):
assert (
tensor.size(dim) % group_size == 0
), f"input dimension {dim} ({tensor.size(dim)} must be a multiple of group_size {group_size} for tensor at index {idx}"
if dim != 0:
tensor_list = torch.chunk(tensor, group_size, dim=dim)
inputs[idx] = torch.cat(tensor_list)
tensor_list = torch.ops._c10d_functional.reduce_scatter_tensor_coalesced( # type: ignore[attr-defined]
inputs,
reduceOp.lower(),
group_size,
group_name, # type: ignore[possibly-undefined]
)
return list(map(_maybe_wrap_tensor, tensor_list))
# This is a bit unsafe: it checks if the first argument in the schema reports as a non-mutable alias.
# Today, this maps 1:1 with "aten ops that are views".
def _is_view_op(tgt):
assert isinstance(tgt, torch._ops.OpOverload)
schema = tgt._schema
if len(schema.arguments) > 0:
first_arg = schema.arguments[0]
# check if op is a view
return first_arg.alias_info is not None and not first_arg.alias_info.is_write
def all_to_all_single(
self: torch.Tensor,
output_split_sizes: Optional[List[int]],
input_split_sizes: Optional[List[int]],
group: RANK_TYPES,
tag: str = "",
) -> torch.Tensor:
"""
Each process splits input tensor and then scatters the split list
to all processes in a group. Then concatenate the received tensors from all
the processes in the group and return single output tensor.
Group can be one of:
List[int]: ranks participating in the collective.
List[List[int]]: 2D mesh of ranks taking part of this collective in MPMD.
ProcessGroup: Will perform a collective using the ranks and tag of the PG.
DeviceMesh: Do a SPMD collective over all ranks of the mesh
(DeviceMesh, int): Do a MPMD collective over one dimension of the DeviceMesh
:: N.B. If you pass a PG or a 1D list to perform a MPMD collective, the compiler won't be able to recover
that information and perform collective algebraic optimization. Use other forms of input for that.
"""
if output_split_sizes is not None:
assert all(
isinstance(size, (int, torch.SymInt)) for size in output_split_sizes
), output_split_sizes
if input_split_sizes is not None:
assert all(
isinstance(size, (int, torch.SymInt)) for size in input_split_sizes
), input_split_sizes
group_name = _resolve_group_name(group, tag)
group_size = c10d._get_group_size_by_name(group_name)
if output_split_sizes is None or input_split_sizes is None:
assert output_split_sizes is None and input_split_sizes is None, (
"output_split_sizes and input_split_sizes must either be "
"specified together or both set to None"
)
output_split_sizes = [self.shape[0] // group_size] * group_size
input_split_sizes = output_split_sizes
tensor = torch.ops._c10d_functional.all_to_all_single( # type: ignore[attr-defined]
self,
output_split_sizes,
input_split_sizes,
group_name,
)
return _maybe_wrap_tensor(tensor)
def all_to_all_single_autograd(
self: torch.Tensor,
output_split_sizes: Optional[List[int]],
input_split_sizes: Optional[List[int]],
group: RANK_TYPES,
tag: str = "",
) -> torch.Tensor:
"""
Same as all_to_all_single but supports autograd.
"""
if output_split_sizes is not None:
assert all(
isinstance(size, (int, torch.SymInt)) for size in output_split_sizes
), output_split_sizes
if input_split_sizes is not None:
assert all(
isinstance(size, (int, torch.SymInt)) for size in input_split_sizes
), input_split_sizes
group_name = _resolve_group_name(group, tag)
group_size = c10d._get_group_size_by_name(group_name)
if output_split_sizes is None or input_split_sizes is None:
assert output_split_sizes is None and input_split_sizes is None, (
"output_split_sizes and input_split_sizes must either be "
"specified together or both set to None"
)
output_split_sizes = [self.shape[0] // group_size] * group_size
input_split_sizes = output_split_sizes
tensor = torch.ops._c10d_functional_autograd.all_to_all_single( # type: ignore[attr-defined]
self,
output_split_sizes,
input_split_sizes,
group_name,
)
return _FromTorchTensor.apply(tensor)
def permute_tensor(
self: torch.Tensor,
src_dst: List[int],
group: RANK_TYPES,
tag: str = "",
) -> torch.Tensor:
"""
Permutes the elements of the tensor according to the given source/destination pairs. `src_dst` should
be defined such that src_dst[m] == n means m sends to n.
Group can be one of:
List[int]: ranks participating in the collective.
List[List[int]]: 2D mesh of ranks taking part of this collective in MPMD.
ProcessGroup: Will perform a collective using the ranks and tag of the PG.
DeviceMesh: Do a SPMD collective over all ranks of the mesh
(DeviceMesh, int): Do a MPMD collective over one
"""
t, rankset, group_size = _expand_group(group, tag)
local_pg = c10d._find_or_create_pg_by_ranks_and_tag(t, rankset, group_size)
output_split_sizes = [0] * group_size
input_split_sizes = [0] * group_size
for src, dst in enumerate(src_dst):
if src == dist.get_rank(local_pg):
input_split_sizes[dst] = self.numel()
if dst == dist.get_rank(local_pg):
output_split_sizes[src] = self.numel()
return all_to_all_single(self, output_split_sizes, input_split_sizes, group, tag)
class AsyncCollectiveTensor(torch.Tensor):
r"""
A Tensor wrapper subclass that is used to trigger a call to wait
prior to first use of the underlying tensor.
Use it inside functional collective pytorch wrappers like the following:
def functional_collective(self, group, tag):
tag, rankset, group_size = _expand_group(group, tag)
tensor = torch.ops.c10d_functional.{collective}(self, tag, rankset, group_size)
return _maybe_wrap_tensor(tensor)
"""
elem: torch.Tensor
completed: bool
__slots__ = ["elem", "completed"]
@staticmethod
def __new__(cls, elem: torch.Tensor):
r = torch.Tensor._make_wrapper_subclass( # type: ignore[attr-defined]
cls,
elem.size(),
strides=elem.stride(),
storage_offset=elem.storage_offset(),
dtype=elem.dtype,
layout=elem.layout,
device=elem.device,
requires_grad=elem.requires_grad,
)
r.elem = elem
r.completed = False
return r
def __tensor_flatten__(self):
return ["elem"], None
def tolist(self):
return self.trigger_wait().tolist()
@staticmethod
def __tensor_unflatten__(inner_tensors, meta, outer_size, outer_stride):
assert meta is None
elem = inner_tensors["elem"]
return AsyncCollectiveTensor(elem)
def __repr__(self):
return f"AsyncCollectiveTensor({self.trigger_wait()})"
def trigger_wait(self):
if not self.completed:
out = wait_tensor(self.elem)
self.completed = True
return out
else:
return self.elem
def wait(self) -> torch.Tensor:
return wait_tensor(self.elem)
def _get_acs_underlying_tensor(self):
"""This method enables _functional_collectives_impl to test if a tensor is an ACS"""
return self.elem
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
if func == torch.ops.aten.view.default:
# Fast handle aten.view as a lot of view related op goes to aten.view
# eventually, this avoids pytree slowdown
res = func(args[0].elem, args[1])
wrapper_res = AsyncCollectiveTensor(res)
return wrapper_res
is_view_op = _is_view_op(func)
def unwrap(e: AsyncCollectiveTensor):
# wait_tensor is idepotent and will do stream sync only once
if not is_view_op:
return e.trigger_wait()
return e.elem
def wrap(e: torch.Tensor):
# wait_tensor is idepotent and will do stream sync only once
assert not isinstance(e, AsyncCollectiveTensor)
res = AsyncCollectiveTensor(e)
return res
unwrapped_args = tree_map_only(AsyncCollectiveTensor, unwrap, args)
unwrapped_kwargs = tree_map_only(AsyncCollectiveTensor, unwrap, kwargs)
# we don't wrap the result as it doesn't need to be waited on.
out = func(*unwrapped_args, **unwrapped_kwargs)
# View ops dont require a sync, so we should re-wrap the outputs.
if is_view_op:
out = tree_map_only(torch.Tensor, wrap, out)
return out
def numpy(self):
return self.wait().numpy()
"""
Utils and infrastructure for tracing support
"""
def _expand_group(group: RANK_TYPES, tag: str = "") -> Tuple[str, List[int], int]:
"""
_expand_group desugars the different RANK_TYPES types into a canonical format that is traceable.
By having this be part of the explicit eager codepath, we avoid having to specialize behavior inside
torchdynamo and can still interoperate with processgroup objects or other untraceable forms.
"""
# had to define this hack _inside_ expand_group to avoid
# graph_break [('torch.* op returned non-Tensor int
# caused by 'cast_*` functions being treated as 'torch.*' ops (iiuc)
if TYPE_CHECKING:
def cast_listlistint(x):
return cast(List[List[int]], x)
def cast_listint(x):
return cast(List[int], x)
else:
# fake cast op for use at runtime since dynamo doesn't support real cast
# also, dynamo didn't like encountering 'typing' objects ()
# NotImplementedError: argument of type: <class 'typing._GenericAlias'>
def cast_listlistint(x):
return x
def cast_listint(x):
return x
rankset: List[int]
if isinstance(group, list):
if isinstance(group[0], list):
nested_list = cast_listlistint(group)
rankset = []
group_size = -1
for rs in nested_list:
rankset.extend(rs)
if group_size != -1 and group_size != len(rs):
raise ValueError(
f"group sizes must be identical found {group_size} and {len(rs)}"
)
group_size = len(rs)
else:
rankset = cast_listint(group)
group_size = len(rankset)
elif isinstance(group, dist.ProcessGroup):
rankset = dist.get_process_group_ranks(group)
group_size = len(rankset)
tag = tag or c10d._get_group_tag(group)
elif isinstance(group, DeviceMesh):
assert (
group.ndim == 1
), "Only 1D mesh is supported, pass in (DeviceMesh, int) together if mesh > 1D"
# TODO: it should run collective in the whole mesh instead of dim 0
tag, rankset, _ = group._dim_group_infos[0]
group_size = len(rankset)
elif isinstance(group, tuple):
if (
len(group) == 2
and isinstance(group[0], DeviceMesh)
and isinstance(group[1], int)
):
dmesh = group[0]
dim = group[1]
tag, rankset, _ = dmesh._dim_group_infos[dim]
group_size = len(rankset)
else:
raise ValueError("Invalid tuple for group must be (DeviceMesh, int)")
else:
raise ValueError(
"Invalid type for group, must be one of List, Processgroup, DeviceMesh or (DeviceMesh, int)."
)
return (tag, rankset, group_size)
def _resolve_group_name(group: RANK_TYPES, tag: str = "") -> str:
"""
Given group in RANK_TYPES, return the group name.
"""
# `tag` will be deprecated. See details in:
# https://github.com/pytorch/pytorch/issues/93173#issuecomment-1907095208
if isinstance(group, dist.ProcessGroup):
return group.group_name
elif isinstance(group, str):
return group
elif isinstance(group, DeviceMesh):
assert (
group.ndim == 1
), "Only 1D mesh is supported, pass in (DeviceMesh, int) together if mesh > 1D"
return group._dim_group_infos[0][2]
elif isinstance(group, tuple):
if (
len(group) == 2
and isinstance(group[0], DeviceMesh)
and isinstance(group[1], int)
):
dmesh = group[0]
dim = group[1]
return dmesh._dim_group_infos[dim][2]
else:
raise ValueError("Invalid tuple for group must be (DeviceMesh, int)")
elif isinstance(group, list):
if not is_torchdynamo_compiling():
warnings.warn(
"The combination of ranks + tag as process group "
"identifier has been deprecated. Please switch to "
"using ProcessGroup, DeviceMesh, or group name instead.",
FutureWarning,
stacklevel=3,
)
return c10d._resolve_group_name_by_ranks_and_tag(cast(List[int], group), tag)
else:
raise ValueError(f"Unsupported group type: {type(group)}, {group}")
class _FromTorchTensor(torch.autograd.Function):
"""
_FromTorchTensor allows autograd to propagate from a normal Tensor to an
AsyncCollectiveTensor.
"""
@staticmethod
def forward( # type: ignore[override]
ctx, # pyre-ignore[2]: Parameter must be annotated.
input: torch.Tensor,
) -> torch.Tensor:
return _maybe_wrap_tensor(input)
@staticmethod
def backward(ctx, grad_output: torch.Tensor) -> torch.Tensor: # type: ignore[override]
return grad_output
def _are_we_tracing() -> bool:
if is_torchdynamo_compiling():
return True
# If functionalization is turned on, we are almost definitely compiling/tracing.
# (In particular, AOTAutograd traces a model once with functionalization on
# but proxy tracing turned of, so this is how we detect it).
if (
torch._C._get_dispatch_mode(torch._C._TorchDispatchModeKey.FUNCTIONAL)
is not None
):
return True
mode = get_innermost_proxy_mode()
if mode is None:
return False
return mode.tracer is not None
def _maybe_wrap_tensor(self) -> torch.Tensor:
if _are_we_tracing():
return wait_tensor(self)
res = AsyncCollectiveTensor(self)
return cast(torch.Tensor, res)
def _all_gather_into_tensor_coalesced_meta(self, tag, rankset, group_size):
def mk_out_tensor(shard):
out_size = list(shard.size())
out_size[0] *= group_size
out_tensor = shard.new_empty(out_size)
return out_tensor
return [mk_out_tensor(t) for t in self]
# We now register meta kernels to deal with tracing
def _broadcast_meta(self, *args):
return torch.empty_like(self)
def _all_reduce_meta(self, *args):
return torch.empty_like(self)
def _wait_tensor_meta(self, *args):
return torch.empty_like(self)
def _all_gather_into_tensor_meta(shard, tag, rankset, group_size):
out_size = list(shard.size())
out_size[0] *= group_size
return shard.new_empty(out_size)
def _reduce_scatter_tensor_meta(input, reduce_op, tag, rankset, group_size):
out_size = list(input.size())
out_size[0] //= group_size
return input.new_empty(out_size)
def _all_reduce_coalesced_meta(self, *args):
return [torch.empty_like(t) for t in self]
def _all_reduce__meta(inp, *args):
return inp
def _broadcast__meta(inp, *args):
return inp
def _all_reduce_coalesced__meta(inputs, *args):
return inputs
def _reduce_scatter_tensor_coalesced_meta(inputs, reduceOp, tag, rankset, group_size):
def mk_out_tensor(input):
out_size = list(input.size())
out_size[0] //= group_size
out_tensor = input.new_empty(out_size)
return out_tensor
return [mk_out_tensor(t) for t in inputs]
# NB: We often say all_to_all has dynamic output size, but this is not
# technically true: instead, what typically happens is you manually
# communicate the output_split_sizes ahead of time (which is dynamic),
# but then you pass those sizes explicitly, and the all to all itself
# isn't dynamic, it just follows the specified output splits
def _all_to_all_single_meta(
input, output_split_sizes, input_split_sizes, *args, **kwargs
):
if output_split_sizes is None:
return input.new_empty(input.size())
else:
for s in output_split_sizes:
torch._check_is_size(s)
out_size = list(input.size())
out_size[0] = sum(output_split_sizes)
return input.new_empty(out_size)
def _all_gather_into_tensor_out_native_meta(input, group_size, group_name, *, out):
shape = list(input.size())
shape[0] *= group_size
return input.new_empty(shape)
def _all_gather_into_tensor_native_meta(input, group_size, group_name):
shape = list(input.size())
shape[0] *= group_size
return input.new_empty(shape)
def _all_gather_into_tensor_coalesced_native_meta(inputs, group_size, group_name):
return [
_all_gather_into_tensor_native_meta(input, group_size, group_name)
for input in inputs
]
def _reduce_scatter_tensor_native_meta(inp, reduce_op, group_size, group_name):
shape = list(inp.size())
shape[0] //= group_size
return inp.new_empty(shape)
def _reduce_scatter_tensor_coalesced_native_meta(
inputs, reduce_op, group_size, group_name
):
return [
_reduce_scatter_tensor_native_meta(inp, reduce_op, group_size, group_name)
for inp in inputs
]
if not torch._running_with_deploy():
# Library MUST be defined at module scope or it doesn't work
# Creating a "DEF" Library always crashes torch::deploy so we create our
# Library instances here guarded against running inside it
lib_impl = torch.library.Library("_c10d_functional", "IMPL")
lib_impl.impl("all_reduce", _all_reduce_meta, "Meta")
lib_impl.impl("all_reduce_", _all_reduce__meta, "Meta")
lib_impl.impl("all_reduce_coalesced", _all_reduce_coalesced_meta, "Meta")
lib_impl.impl("all_reduce_coalesced_", _all_reduce_coalesced__meta, "Meta")
lib_impl.impl("wait_tensor", _wait_tensor_meta, "Meta")
lib_impl.impl(
"all_gather_into_tensor_out", _all_gather_into_tensor_out_native_meta, "Meta"
)
lib_impl.impl("all_gather_into_tensor", _all_gather_into_tensor_native_meta, "Meta")
lib_impl.impl(
"all_gather_into_tensor_coalesced",
_all_gather_into_tensor_coalesced_native_meta,
"Meta",
)
lib_impl.impl("reduce_scatter_tensor", _reduce_scatter_tensor_native_meta, "Meta")
lib_impl.impl(
"reduce_scatter_tensor_coalesced",
_reduce_scatter_tensor_coalesced_native_meta,
"Meta",
)
lib_impl.impl("all_to_all_single", _all_to_all_single_meta, "Meta")
lib_impl.impl("broadcast", _broadcast_meta, "Meta")
lib_impl.impl("broadcast_", _broadcast__meta, "Meta")
# Register legacy ops for backward compatibility
# TODO(yifu): remove these in functional collective beta release
legacy_lib = torch.library.Library("c10d_functional", "DEF")
legacy_lib_impl = torch.library.Library("c10d_functional", "IMPL")
ops_defs = [
"broadcast(Tensor self, int src, str tag, int[] ranks, int group_size) -> Tensor",
"all_reduce(Tensor self, str reduceOp, str tag, int[] ranks, int group_size) -> Tensor",
"all_reduce_coalesced(Tensor[] self, str reduceOp, str tag, int[] ranks, int group_size) -> Tensor[]",
"wait_tensor(Tensor self) -> Tensor",
"all_gather_into_tensor(Tensor shard, str tag, int[] ranks, int group_size) -> Tensor",
"all_gather_into_tensor_coalesced(Tensor[] input, str tag, int[] ranks, int group_size) -> Tensor[]",
"reduce_scatter_tensor(Tensor input, str reduceOp, str tag, int[] ranks, int group_size) -> Tensor",
"reduce_scatter_tensor_coalesced(Tensor[] inputs, str reduceOp, str tag, int[] ranks, int group_size) -> Tensor[]",
"all_to_all_single(Tensor input, SymInt[]? output_split_sizes, SymInt[]? input_split_sizes, str tag, int[] ranks, int group_size) -> Tensor", # noqa: B950
]
my_module = sys.modules[__name__]
for op_def in ops_defs:
op_name = op_def[0 : op_def.index("(")]
backend_impl = getattr(fun_col_impl, f"_{op_name}")
legacy_lib.define(op_def, tags=torch.Tag.pt2_compliant_tag)
legacy_lib_impl.impl(op_name, backend_impl, "CompositeImplicitAutograd")
else:
warnings.warn(
"PyTorch Distributed functional collectives do not work with torch::deploy."
)
"""
Dynamo Remappings allow seamless translation from non-functional collectives of supportable form into
functional collective calls followed by inplace copy ops, allowing them to be traced into a functional graph.
We implement this by writing a decomposition and teaching dynamo how to associate it to a corresponding op via
the mapping dict below.
These schemas intentionally match torch.distributed.distributed_c10d.* ops that we are trying to remap from