-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProblem_0743_networkDelayTime.cc
211 lines (187 loc) · 4.76 KB
/
Problem_0743_networkDelayTime.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
#include <cstdint>
#include <queue>
#include <utility>
#include <vector>
using namespace std;
// Prim 和 Diskstra 算法的区别:
// Prim更新的是未标记集合到已标记集合之间的距离
// Dijkstra更新的是源点到未标记集合之间的距离
// Prim是计算最小生成树的算法,比如为N个村庄修路,怎么修花销最少
// Dijkstra是计算最短路径的算法,比如从a村庄走到其他任意村庄的距离
// Dijkstra算法模版
class Solution
{
private:
class cmp
{
public:
bool operator()(std::pair<int, int>& lhs, std::pair<int, int>& rhs)
{
return lhs.second > rhs.second;
}
};
public:
// 动态建图+普通堆的实现
int networkDelayTime(vector<vector<int>>& times, int n, int k)
{
vector<vector<std::pair<int, int>>> graph(n + 1);
for (auto& e : times)
{
graph[e[0]].push_back({e[1], e[2]});
}
vector<bool> visited(n + 1);
static const int MAX = 1e6;
vector<int> distance(n + 1, MAX);
// 0 : 当前节点
// 1 : 源点到当前点距离,按从小到大排序
priority_queue<std::pair<int, int>, vector<std::pair<int, int>>, cmp> heap;
distance[k] = 0;
heap.push({k, 0});
while (!heap.empty())
{
auto [u, _] = heap.top();
heap.pop();
visited[u] = true;
for (auto& [v, w] : graph[u])
{
if (!visited[v] && distance[u] + w < distance[v])
{
distance[v] = distance[u] + w;
heap.push({v, distance[v]});
}
}
}
int ans = INT32_MIN;
for (int i = 1; i <= n; i++)
{
if (distance[i] == MAX)
{
return -1;
}
ans = std::max(ans, distance[i]);
}
return ans;
}
// 最优解
// 链式前向星+反向索引堆的实现
int networkDelayTime2(vector<vector<int>>& times, int n, int s)
{
build(n);
for (auto& edge : times)
{
addEdge(edge[0], edge[1], edge[2]);
}
addOrUpdateOrIgnore(s, 0);
while (!isEmpty())
{
int u = pop();
for (int ei = head[u]; ei > 0; ei = next[ei])
{
addOrUpdateOrIgnore(to[ei], distance[u] + weight[ei]);
}
}
int ans = INT32_MIN;
for (int i = 1; i <= n; i++)
{
if (distance[i] == INT32_MAX)
{
return -1;
}
ans = std::max(ans, distance[i]);
}
return ans;
}
static const int MAXN = 101;
static const int MAXM = 6001;
// 链式前向星
vector<int> head = vector<int>(MAXN);
vector<int> next = vector<int>(MAXM);
vector<int> to = vector<int>(MAXM);
vector<int> weight = vector<int>(MAXM);
int cnt;
// 反向索引堆
vector<int> heap = vector<int>(MAXN);
// where[v] = -1,表示v这个节点,从来没有进入过堆
// where[v] = -2,表示v这个节点,已经弹出过了
// where[v] = i(>=0),表示v这个节点,在堆上的i位置
vector<int> where = vector<int>(MAXN);
int heapSize;
vector<int> distance = vector<int>(MAXN);
void build(int n)
{
cnt = 1;
heapSize = 0;
std::fill(head.begin() + 1, head.begin() + n + 1, 0);
std::fill(where.begin() + 1, where.begin() + n + 1, -1);
std::fill(distance.begin() + 1, distance.begin() + n + 1, INT32_MAX);
}
// 链式前向星建图
void addEdge(int u, int v, int w)
{
next[cnt] = head[u];
to[cnt] = v;
weight[cnt] = w;
head[u] = cnt++;
}
void addOrUpdateOrIgnore(int v, int c)
{
if (where[v] == -1)
{
heap[heapSize] = v;
where[v] = heapSize++;
distance[v] = c;
heapInsert(where[v]);
}
else if (where[v] >= 0)
{
distance[v] = std::min(distance[v], c);
heapInsert(where[v]);
}
}
// 反向索引堆的精髓就在于 heapInsert
// 如果是小根堆,只允许修改的值 <= 当前的值,
// 如果是大根堆,只允许修改的值 >= 当前的值,
// 直接从where[i]找i在堆的位置,然后执行 heapInsert
// 这样只需要局部向上调整堆,而不是 heapify
void heapInsert(int i)
{
while (distance[heap[i]] < distance[heap[(i - 1) / 2]])
{
swap(i, (i - 1) / 2);
i = (i - 1) / 2;
}
}
int pop()
{
int ans = heap[0];
swap(0, --heapSize);
heapify(0);
where[ans] = -2;
return ans;
}
void heapify(int i)
{
int l = i * 2 + 1;
while (l < heapSize)
{
int best = l + 1 < heapSize && distance[heap[l + 1]] < distance[heap[l]] ? l + 1 : l;
best = distance[heap[best]] < distance[heap[i]] ? best : i;
if (best == i)
{
break;
}
swap(best, i);
i = best;
l = i * 2 + 1;
}
}
bool isEmpty() { return heapSize == 0; }
void swap(int i, int j)
{
int tmp = heap[i];
heap[i] = heap[j];
heap[j] = tmp;
where[heap[i]] = i;
where[heap[j]] = j;
}
};