-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProblem_0813_largestSumOfAverages.cc
68 lines (63 loc) · 1.64 KB
/
Problem_0813_largestSumOfAverages.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#include <algorithm>
#include <iostream>
#include <vector>
#include "UnitTest.h"
using namespace std;
class Solution
{
public:
double largestSumOfAverages(vector<int> &nums, int k)
{
int n = nums.size();
// 前缀和优化
vector<double> sum(n);
sum[0] = nums[0];
for (int i = 1; i < n; i++)
{
sum[i] = sum[i - 1] + nums[i];
}
// dp[i][k] 表示:将 nums 中的前 i 个数分成 k 个子数组的最大平均值总和
vector<vector<double>> dp(n + 1, vector<double>(k + 1));
// base case: k = 1,如果分一组
for (int i = 1; i <= n; i++)
{
dp[i][1] = sum[i - 1] / i;
}
// dp
for (int i = 1; i <= n; i++)
{
for (int m = 2; m <= k; m++)
{
for (int j = 1; j < i; j++)
{
// 第 i 个数的下标为 i - 1
// * * * * * * * *
// ↑ ↑
// j i-1
// 取 j < i,则递推公式有
// dp[i][m] = std::max(dp[i][m], dp[j][m-1] + avg(j, i-1))
// avg(j, i-1)为区间[j, i-1]的平均值
double avg = (sum[i - 1] - sum[j - 1]) / (i - j);
dp[i][m] = max(dp[i][m], dp[j][m - 1] + avg);
}
}
}
return dp[n][k];
}
};
void testLargestSumOfAverages()
{
Solution s;
vector<int> n1 = {9, 1, 2, 3, 9};
vector<int> n2 = {1, 2, 3, 4, 5, 6, 7};
vector<int> n3 = {4, 1, 7, 5, 6, 2, 3};
EXPECT_EQ_DOUBLE(20.00000, s.largestSumOfAverages(n1, 3));
EXPECT_EQ_DOUBLE(20.50000, s.largestSumOfAverages(n2, 4));
EXPECT_EQ_DOUBLE(18.16667, s.largestSumOfAverages(n3, 4));
EXPECT_SUMMARY;
}
int main()
{
testLargestSumOfAverages();
return 0;
}