-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProblem_0850_rectangleArea.cc
126 lines (112 loc) · 3.07 KB
/
Problem_0850_rectangleArea.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
#include <algorithm>
#include <iostream>
#include <tuple>
#include <vector>
#include "UnitTest.h"
using namespace std;
class Solution
{
private:
const int mod = 1e9 + 7;
const int IN = 1;
const int OUT = -1;
public:
// x1 y1 x2 y2 左下角 右上角
// 垂直线扫描
int rectangleArea(vector<vector<int>> &rectangles)
{
int n = rectangles.size();
// y轴的水平边界
vector<int> hBound;
for (auto &arr : rectangles)
{
// 下边界
hBound.emplace_back(arr[1]); // y0
// 上边界
hBound.emplace_back(arr[3]); // y1
}
std::sort(hBound.begin(), hBound.end());
// 删除重复的边界
hBound.erase(std::unique(hBound.begin(), hBound.end()), hBound.end());
int m = hBound.size();
// m条边界,只有m-1个区域
// 每个seg是hBound[i]和hBound[i+1]确定
vector<int> seg(m - 1);
// - x轴的垂直边界
// - 原数组下标
// - 左右标记
vector<tuple<int, int, int>> sweep;
for (int i = 0; i < n; i += 1)
{
sweep.emplace_back(rectangles[i][0], i, IN); // 矩形左边
sweep.emplace_back(rectangles[i][2], i, OUT); // 矩形右边
}
// 根据横坐标排序,扫描垂直边左向右
std::sort(sweep.begin(), sweep.end());
long long ans = 0;
for (int i = 0; i < sweep.size(); i++)
{
int j = i;
// 重叠的边有多少条 ?
while (j + 1 < sweep.size() && get<0>(sweep[i]) == get<0>(sweep[j + 1]))
{
j++;
}
// 经过上面的while后,j是最后一个满足条件的位置
// 何时会搜索到最后?
// 所有的边都是右边界的时候
if (j + 1 == sweep.size())
{
break;
}
// 累计整个x坐标相同的区间
for (int k = i; k <= j; k++)
{
int idx = get<1>(sweep[k]); // 重叠边的序号
int diff = get<2>(sweep[k]); // 重叠边的类型
int down = rectangles[idx][1], up = rectangles[idx][3];
// 遍历所有的y轴构成的线段区间
for (int x = 0; x < m - 1; x++)
{
// 整个区间正好在当前矩形覆盖的y轴区域
if (down <= hBound[x] && hBound[x + 1] <= up)
{
// 类似差分累计
// 入边+1,出边-1
seg[x] += diff;
}
}
}
// 计算当前扫描出来的y轴覆盖大小
long long cover = 0;
for (int k = 0; k < m - 1; k++)
{
if (seg[k] > 0)
{
cover += 1LL * hBound[k + 1] - hBound[k];
cover %= mod;
}
}
// 高 * 宽
ans += cover * (get<0>(sweep[j + 1]) - get<0>(sweep[j]));
ans %= mod;
// 跨过坐标相同的点
i = j;
}
return ans;
}
};
void testRectangleArea()
{
Solution s;
vector<vector<int>> arr1 = {{0, 0, 2, 2}, {1, 0, 2, 3}, {1, 0, 3, 1}};
vector<vector<int>> arr2 = {{0, 0, 1000000000, 1000000000}};
EXPECT_EQ_INT(6, s.rectangleArea(arr1));
EXPECT_EQ_INT(49, s.rectangleArea(arr2));
EXPECT_SUMMARY;
}
int main()
{
testRectangleArea();
return 0;
}