-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathinference.py
45 lines (37 loc) · 1.38 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import torch
import torch.nn.functional as F
from torch.cuda import amp
from tqdm import tqdm
from utils.utils import gamma2snr, snr2as, gamma2as, gamma2logas
def reverse_process_new(z_1, mels, gamma, steps, model, with_amp=False):
log_alpha, log_var = gamma2logas(gamma)
var = log_var.exp()
alpha_st = torch.exp(log_alpha[:-1] - log_alpha[1:])
c = -torch.expm1(gamma[:-1] - gamma[1:])
c.relu_()
T = gamma.numel() - 1
z_t = z_1
for t in tqdm(range(T, 0, -1)):
s = t - 1
with amp.autocast(enabled=with_amp):
noise_hat = model(z_t, mels, steps[t:t+1])
noise_hat = noise_hat.float()
mu = (z_t - var[t].sqrt() * c[s] * noise_hat) * alpha_st[s]
z_t = mu
if s:
z_t += (var[s] * c[s]).sqrt() * torch.randn_like(z_t)
return z_t
def reverse_process_ddim(z_1, mels, gamma, steps, model, with_amp=False):
Pm1 = -torch.expm1((gamma[1:] - gamma[:-1]) * 0.5)
log_alpha, log_var = gamma2logas(gamma)
alpha_st = torch.exp(log_alpha[:-1] - log_alpha[1:])
std = log_var.mul(0.5).exp()
T = gamma.numel() - 1
z_t = z_1
for t in tqdm(range(T, 0, -1)):
s = t - 1
with amp.autocast(enabled=with_amp):
noise_hat = model(z_t, mels, steps[t:t+1])
noise_hat = noise_hat.float()
z_t.mul_(alpha_st[s]).add_(std[s] * Pm1[s] * noise_hat)
return z_t