Releases: yukinarit/pyserde
v0.9.2
v0.9.1
v0.9.0
pyserde
v0.9 adds one of the most awaited features, the type checking functionality 🎉 If you add Coerce
or Strict
in serde
decorator, pyserde
will do type coercing or type checking based on the declared types.
Coerce
Type coercing automatically converts a value into the declared type during (de)serialization. If the value is incompatible e.g. value is "foo" and type is int, pyserde raises an SerdeError
.
@serde(type_check=Coerce)
@dataclass
class Foo
s: str
foo = Foo(10)
# pyserde automatically coerce the int value 10 into "10".
# {"s": "10"} will be printed.
print(to_json(foo))
Strict
Strict type checking is to check every value against the declared type during (de)serialization. We plan to make Strict
a default type checker in the future release.
@serde(type_check=Strict)
@dataclass
class Foo
s: str
foo = Foo(10)
# pyserde checks the value 10 is instance of `str`.
# SerdeError will be raised in this case because of the type mismatch.
print(to_json(foo))
- refactor: Change default type_check from Coerce to NoCheck (23ea180)
- refactor: Change to pass "type_check" parameter in decorator (fbe8dc8)
- feat: Add type coercion feature make it default (dabb777)
- feat: Implement strict type checking (0273b9a)
Another notable change is switching toml library from toml to tomli. tomli is used in a handful of major products e.g. pip
and pytest
and will be the part of Python standard library in Python 3.11.
- feat: Switch toml library to tomli (11b4df6)
- Better documentation about generic alias (fd4e5a5)
- Ensure union_func_name produces a valid function name (eddf250)
- Import 'Literal' from serde.compat (a7450c1)
- Support NumPy 1.23 in Python 3.7/3.8 (3309a73)
- Use str instead of repr in typename, fixing Union[Literal["str"], ...] (b3905ef)
- fix: from_json return returns T not Optional[T] (9e50fb7)
This release had contributions from 1 person: @kngwyu. Thank you so much! 🎉 😂
v0.8.3
v0.8.2
v0.8.1
v0.8.0
Thanks to the contribution by @kigawas, pyserde can optionally use orjson as JSON serializer!
pip install pyserde[orjson]
If orjson is installed in the system, pyserde automatically use orjson in to_json/from_json.
NOTE: In order to align the JSON (de)serializer to orjson, a few parameters are passed in json.dumps
internally. This would lead to a breaking change in some cases. If you need the same behaviour as in pyserde<0.8, please explicitely pass those parameters in serde.json.to_json
. 🙇♂️
to_json(obj, ensure_ascii=True, separators=(", ", ": "))
Other noteble chage is we have @dataclass
decorator back in the all example and test code in the repository as shown below. It's because we found mypy isn't able to deduce the type correctly without @dataclass
decorator. If you are not mypy user, you can still declare a class with only @serde
decorator. 👍 For more information, please read the docs.
@serde
@dataclass # <-- Recommended to add @dataclass if you are mypy user.
class Foo:
i: int
s: str
f: float
b: bool
- build: Add "orjson" extras (ea70ec1)
- orjson support (2744675)
- Update json.py (2d67b65)
- feat: Support class declaration w/wo dataclass (a35f909)
- fix: Add dataclass decorator for all example code (60567ab)
- fix: Treat |None as Optional (5555452)
- Fix the default deserializer for custom class deserializer (6c2245b)
This release had contributions from 1 person: @kigawas. Thank you so much! 🎉 😂
v0.7.3
Thanks to the great contribution by @kmsquire, pyserde supports some numpy types!
@serde
class NPFoo:
i: np.int32
j: np.int64
f: np.float32
g: np.float64
h: np.bool_
u: np.ndarray
v: npt.NDArray
w: npt.NDArray[np.int32]
x: npt.NDArray[np.int64]
y: npt.NDArray[np.float32]
z: npt.NDArray[np.float64]
- feat: Remove try-catch from is_numpy_array() (unnecessary) (731876f)
- feat: Support Literal[...] type annotation (e50c958)
- feat: Support numpy types (78eb22e)
- feat(compat): Only define np_get_origin() for python 3.8 or earlier (02c5af2)
- feat(numpy): Support serialization of numpy.datetime64 (5e521cf)
- Don't import tests module from pyserde package (d664426)
- fix: Recognized numpy arrays on Python 3.7, 3.8 (a0fa36f)
- fix(numpy): Fix direct numpy array deserialization (8f9f71c)
- ci: Remove pypy-3.8 until a numpy wheel is released for it (61b6130)
- chore: Update black, fix test_union formatting (4a708fd)
- chore: Update numpy version specification based on numpy compatibility with python (1fa5e07)
This release had contributions from 2 people: @kmsquire and @chagui. Thank you so much! 🎉 😂