You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Currently we support installation on Linux, Mac and Windows. We also allow you to use docker.
71
-
72
-
DGL works with the following operating systems:
73
-
74
-
Ubuntu 16.04
75
-
76
-
macOS X
77
-
78
-
Windows 10
79
-
80
-
DGL requires Python version 3.6, 3.7, 3.8 or 3.9.
81
-
82
-
DGL supports multiple tensor libraries as backends, e.g., PyTorch, MXNet. For requirements on backends and how to select one, see Working with different backends.
83
-
84
-
Starting at version 0.3, DGL is separated into CPU and CUDA builds. The builds share the same Python package name. If you install DGL with a CUDA 9 build after you install the CPU build, then the CPU build is overwritten.
GNN-RL support popular deep graph neural network package, such as [Torch-Geometric](https://pytorch-geometric.readthedocs.io/en/latest/) and [DGL](https://www.dgl.ai/).
3
+
In this section we will give examples to modeling DNN's topology to computational graph, and embedding them using graph neural network.
Copy file name to clipboardexpand all lines: docs/index.md
+1-34
Original file line number
Diff line number
Diff line change
@@ -11,28 +11,12 @@ We have successfully tested the GNN-RL on model compression task, where we model
11
11
12
12
We have tested our GNN-RL on fine-grained pruning and structured pruning on CNNs.
13
13
We first model the trage DNN as a computational graph, and GNN-RL to search pruning policy directly through DNN's topology. In the reinforcement learning task definition, we use the computational graph as environment states, the action spaces are defined as pruning ratios, and the rewards are the compressed DNN's accuracy. Once the compressed model size satisfied the resource requirements, GNN-RL end the search episode. The network pruning task can be visualize as the diagram below.
14
-
<!-- Se validi [marmor](http://www.subibis.net/) non si quoque minuuntur tergo,
15
-
revelli **tenebris**, apex *Tethys* rogarem temperius monte altaque cura. Gratia
16
-
molliri tempore, tanto mugitibus ictus. Iunctum *requirere probat* destinat
17
-
vigore?
18
14
19
-
- Mea per dum ruent invita quos et
20
-
- Dicentum nece
21
-
- Sibi iuro omnia sentit in timeo brevissimus
22
-
- Misit adflat suum inposito vocem illic figuris -->
23
15
24
16
## Apply GNN-RL Pipeline on Other Discipline
25
17
The GNN-RL is not limited to model compression, it aims to extract topology information through reinforcement learning task.
26
18
We provide APIs to help you define your customized job! It only requires your research object is a graph or been modeled as a graph, you can define your customized RL task (e.g., action space, environment states, rewards). Currently, our collegues are testing GNN-RL on job scheduling taks.
27
-
<!--
28
-
Rogos indotata geminas gaudebat ferendo, nemus quod multum lumina invocat
29
-
tempora nebulae, et agnoscis! Pudori vulnere. Celerem festinus: delere currum
30
-
venerabile limina spatiantia vastum, concita, mei Aeacides, et dea nefas. Artis
31
-
fuit ille nostri quater lumina nec pectora Ixiona confessasque nostra et!
32
19
33
-
> Sociis potentem summo, tamen consistere *amplexa in* pendere rursus nivosos. A
34
-
> herbas excitus et tamen ego manibus ferebat parte. Acta dedit, e occursu
35
-
> ferula in nomina laesi: suos. Crura iacens ora, tum ter officium nasci. -->
36
20
37
21
## Page Index
38
22
Here is the index for you to quick locate the GNN-RL:
@@ -41,24 +25,7 @@ Here is the index for you to quick locate the GNN-RL:
41
25
2.[Introduction by example](intro.md)
42
26
3.[Model DNN as graph](graph/example.md)
43
27
4.[GNN-RL in model compression](compression/pruning.md)
44
-
<!-- Avis gratia, est illa est inrita propiora suum **nunc** apte mulcebat et est.
45
-
Pallados Iuppiter pererrant tu alios repetiti flexisque nec turbavere mutare
46
-
adpositi nec illis vertice, illo Phinea mihi. Dentibus *nece*. Angues in sedit
47
-
spemque lapillos [praecipue](http://novaet.org/tempora.php) ego hos vulnera
0 commit comments