|
| 1 | +/* |
| 2 | + The buffer is a class than handles all data regarding the inkjet. It takes burst and position information and stores it in a FiFo buffer. The buffer is what takes the most memory on the microcontroller |
| 3 | +
|
| 4 | + Todo: |
| 5 | + - Do not meticulously calculate buffer read and write left, but simply hold a variable that keeps this data. It will not magically add 15 lines without the functions knowing about it. |
| 6 | +*/ |
| 7 | + |
| 8 | +#include "Arduino.h" |
| 9 | +#include "Buffer.h" //<*whispers: "there is actually nothing in there" |
| 10 | + |
| 11 | +#define BUFFER_SIZE 4003 //the number of 48 byte blocks the buffer consists of (44 for inkjet, 4 for coordinate) (+3 for off by ones) |
| 12 | +#define PRIMITIVE_OVERLAY_EVEN 7384 //B0001110011011000 |
| 13 | +#define PRIMITIVE_OVERLAY_ODD 8999 //B0010001100100111 |
| 14 | + |
| 15 | +#define BUFFER_MODE_CLEARING 0 //where the buffer line is cleared after use |
| 16 | +#define BUFFER_MODE_STATIC 1 //where the buffer line is retained after use |
| 17 | +#define BUFFER_MODE_LOOPING 2 //where the buffer resets to position 0 after it reaches the end |
| 18 | + |
| 19 | +#define BUFFER_PRINT_MODE_ALL 0 //both odd and even active |
| 20 | +#define BUFFER_PRINT_MODE_ODD 1 //Only odd active |
| 21 | +#define BUFFER_PRINT_MODE_EVEN 2 //Only even active |
| 22 | + |
| 23 | +class Buffer { |
| 24 | + //class member variables |
| 25 | + uint16_t burstBuffer[BUFFER_SIZE][22]; //burst data |
| 26 | + int32_t positionBuffer[BUFFER_SIZE]; //position data |
| 27 | + int32_t readPosition[2], writePosition; //read and write positions for odd and even |
| 28 | + uint16_t primitiveOverlay[2]; //0 or 1 for even or odd |
| 29 | + //int32_t readLeft[2], writeLeft; //future additions |
| 30 | + uint8_t sideActive[2] = {0, 0}; //turns the overlay on or off for a side |
| 31 | + uint8_t bufferMode = BUFFER_MODE_CLEARING; |
| 32 | + uint8_t bufferPrintMode = BUFFER_PRINT_MODE_ALL; |
| 33 | + uint8_t bufferLoopCounter = 0; //contains how often the buffer has looped. Is used to activate other functions |
| 34 | + |
| 35 | + public: |
| 36 | + Buffer() { |
| 37 | + //make odd and even overlays, used for the 2 positions in the buffer |
| 38 | + primitiveOverlay[0] = PRIMITIVE_OVERLAY_ODD; |
| 39 | + primitiveOverlay[1] = PRIMITIVE_OVERLAY_EVEN; |
| 40 | + |
| 41 | + ClearAll(); //reset the buffer |
| 42 | + } |
| 43 | + void SetMode(uint8_t tempMode) { //sets the mode the buffer operates at |
| 44 | + if (tempMode == BUFFER_MODE_CLEARING || tempMode == BUFFER_MODE_STATIC || tempMode == BUFFER_MODE_LOOPING) { //verify if the requested value is valid |
| 45 | + bufferMode = tempMode; |
| 46 | + } |
| 47 | + } |
| 48 | + uint8_t GetMode() { //get the current buffer mode |
| 49 | + return bufferMode; |
| 50 | + } |
| 51 | + int32_t Next(uint8_t tempSide) { //if possible, adds one to the read position and returns lines left. Data needs to be fetched using other functions |
| 52 | + tempSide &= 1; //constrain side |
| 53 | + |
| 54 | + if (ReadLeftSide(tempSide) > 0) { //if there is something left to read |
| 55 | + readPosition[tempSide] ++; //add one to the read position |
| 56 | + readPosition[tempSide] = readPosition[tempSide] % BUFFER_SIZE; //overflow protection |
| 57 | + //Serial.print("Buffer next side: "); Serial.print(tempSide); Serial.print(", left: "); Serial.println(ReadLeftSide(tempSide)); |
| 58 | + |
| 59 | + if (bufferMode == BUFFER_MODE_LOOPING ) { //if the mode is looping |
| 60 | + if (ReadLeft() == 0) { //if there is nothing left to read on either side |
| 61 | + Reset(); //reset the buffer |
| 62 | + //Serial.println("Loop: Resetting buffer"); |
| 63 | + bufferLoopCounter++; |
| 64 | + } |
| 65 | + } |
| 66 | + return ReadLeftSide(tempSide); |
| 67 | + } |
| 68 | + return -1; //return back -1 if it is not possible |
| 69 | + } |
| 70 | + int32_t LookAheadPosition(uint8_t tempSide) { //takes the position in the next buffer position |
| 71 | + tempSide &= 1; //constrain side |
| 72 | + int32_t tempReadPos; |
| 73 | + if (ReadLeftSide(tempSide) > 0) { //if there is something left ot read |
| 74 | + tempReadPos = readPosition[tempSide]; //make a temporary read position and make it go to the next pos |
| 75 | + tempReadPos ++; |
| 76 | + tempReadPos = tempReadPos % BUFFER_SIZE; //overflow protection |
| 77 | + return positionBuffer[tempReadPos]; |
| 78 | + } |
| 79 | + return -1; //return -1 for error |
| 80 | + } |
| 81 | + int32_t Add(int32_t temp_position, uint16_t tempInput[22]) { //adds a coordinate (int32_t and a burst to the buffer, returns space left if successful, -1 if failed |
| 82 | + int32_t temp_left = WriteLeft(); |
| 83 | + if (temp_left > 0) { //if there is space left in the buffer |
| 84 | + positionBuffer[writePosition] = temp_position; //add position |
| 85 | + //Serial.print("Add to buffer: "); Serial.print(temp_position); Serial.print(": "); |
| 86 | + for (uint8_t a = 0; a < 22; a++) { //add burst |
| 87 | + burstBuffer[writePosition][a] = tempInput[a]; |
| 88 | + //Serial.print(tempInput[a]); Serial.print(", "); |
| 89 | + } |
| 90 | + //Serial.println(""); |
| 91 | + writePosition++; //add one to write position |
| 92 | + writePosition = writePosition % BUFFER_SIZE; //overflow protection |
| 93 | + temp_left--; |
| 94 | + //Serial.print("Buffer write left: "); Serial.println(temp_left); |
| 95 | + //Serial.print("Buffer read left: "); Serial.println(ReadLeft()); |
| 96 | + return temp_left; |
| 97 | + } |
| 98 | + return -1; //return a -1 if this failed |
| 99 | + } |
| 100 | + int32_t ReadLeft() { //returns the number of filled buffer read slots. Automatically returns the largest value |
| 101 | + //calculate read lines left on pos 0 by subtracting read position and adding write position, and then take the modulo of the buffer size to protect from overflows |
| 102 | + int32_t tempCalc1, tempCalc2; |
| 103 | + tempCalc1 = BUFFER_SIZE; |
| 104 | + tempCalc1 += writePosition; |
| 105 | + tempCalc2 = tempCalc1; |
| 106 | + tempCalc1 -= readPosition[0]; |
| 107 | + tempCalc2 -= readPosition[1]; |
| 108 | + tempCalc1 = tempCalc1 % BUFFER_SIZE; //constrain to buffer size |
| 109 | + tempCalc2 = tempCalc2 % BUFFER_SIZE; |
| 110 | + tempCalc1 -= 1; //subtract one because read can never be equal to write |
| 111 | + tempCalc2 -= 1; |
| 112 | + if (tempCalc1 > tempCalc2) { //return smallest value |
| 113 | + return tempCalc1; |
| 114 | + } |
| 115 | + else { |
| 116 | + return tempCalc2; |
| 117 | + } |
| 118 | + } |
| 119 | + int32_t ReadLeftSide(uint8_t tempSide) {//returns the number of lines left to read for a given size |
| 120 | + tempSide &= 1; //constrain side |
| 121 | + int32_t tempCalc; |
| 122 | + tempCalc = BUFFER_SIZE; |
| 123 | + tempCalc += writePosition; |
| 124 | + tempCalc -= readPosition[tempSide]; |
| 125 | + tempCalc = tempCalc % BUFFER_SIZE; //constrain to buffer size |
| 126 | + tempCalc -= 1; //subtract one because read can never be equal to write |
| 127 | + return tempCalc; |
| 128 | + } |
| 129 | + int32_t WriteLeft() { //returns the number of free buffer write slots. Automatically returns the smallest value |
| 130 | + //calculate write lines left on pos 0 by subtracting write position and adding read position, and then take the modulo of the buffer size to protect from overflows |
| 131 | + int32_t tempCalc1, tempCalc2; |
| 132 | + if (bufferMode == BUFFER_MODE_CLEARING) { //if the buffer is cleared after a line is printed, calculate rolling value |
| 133 | + tempCalc1 = BUFFER_SIZE; |
| 134 | + tempCalc1 -= writePosition; |
| 135 | + tempCalc2 = tempCalc1; |
| 136 | + tempCalc1 += readPosition[0]; |
| 137 | + tempCalc2 += readPosition[1]; |
| 138 | + tempCalc1 = tempCalc1 % BUFFER_SIZE; //constrain to buffer size |
| 139 | + tempCalc2 = tempCalc2 % BUFFER_SIZE; |
| 140 | + tempCalc1 -= 2; //subtract to create some protection |
| 141 | + tempCalc2 -= 2; |
| 142 | + if (tempCalc1 < tempCalc2) { //return smallest value |
| 143 | + return tempCalc1; |
| 144 | + } |
| 145 | + else { |
| 146 | + return tempCalc2; |
| 147 | + } |
| 148 | + } |
| 149 | + if (bufferMode == BUFFER_MODE_STATIC || bufferMode == BUFFER_MODE_LOOPING) { //if the line is retained after it is printed |
| 150 | + tempCalc1 = BUFFER_SIZE; //start with the buffer size |
| 151 | + tempCalc1 -= writePosition; //subtract where we are currently writing |
| 152 | + tempCalc1 -= 2; //subtract to create some protection |
| 153 | + return tempCalc1; |
| 154 | + } |
| 155 | + return 0; //if you got here, something went horribly wrong |
| 156 | + } |
| 157 | + void ClearAll() { //resets the read and write positions in the buffer |
| 158 | + for (uint16_t b = 0; b < BUFFER_SIZE; b++) { |
| 159 | + for (uint8_t a = 0; a < 22; a++) { |
| 160 | + burstBuffer[b][a] = 0; |
| 161 | + } |
| 162 | + positionBuffer[b] = 0; |
| 163 | + } |
| 164 | + readPosition[0] = 0; |
| 165 | + readPosition[1] = 0; |
| 166 | + writePosition = 1; |
| 167 | + } |
| 168 | + void Reset() { //only resets the read position to the first array position |
| 169 | + readPosition[0] = 0; |
| 170 | + readPosition[1] = 0; |
| 171 | + } |
| 172 | + uint16_t GetPulse(uint8_t temp_address) { |
| 173 | + temp_address = constrain(temp_address, 0, 21); |
| 174 | + uint16_t tempPulse = 0; //make the return pulse |
| 175 | + tempPulse = tempPulse & PRIMITIVE_OVERLAY_EVEN & burstBuffer[readPosition[0]][temp_address]; |
| 176 | + tempPulse = tempPulse & PRIMITIVE_OVERLAY_ODD & burstBuffer[readPosition[1]][temp_address]; |
| 177 | + return tempPulse; |
| 178 | + } |
| 179 | + void SetActive(uint8_t tempSide, uint8_t tempState) { //set which side (odd or even) is on or off |
| 180 | + tempSide = constrain(tempSide, 0, 1); |
| 181 | + tempState = constrain(tempState, 0, 1); |
| 182 | + sideActive[tempSide] = tempState; |
| 183 | + } |
| 184 | + void SetPrintMode(uint8_t tempMode){ //set what mode the head prints at. 0 is both on, 1 is odd only, 2 is even only |
| 185 | + //this function looks a lot like SetActive, but is meant for more permanent settings |
| 186 | + if (tempMode == BUFFER_PRINT_MODE_ALL || tempMode == BUFFER_PRINT_MODE_ODD || tempMode == BUFFER_PRINT_MODE_EVEN){ |
| 187 | + bufferPrintMode = tempMode; |
| 188 | + } |
| 189 | + |
| 190 | + } |
| 191 | + uint16_t *GetBurst(uint16_t tempBurst[22]) { //gets the complete current burst, based on the 2 positions from buffer and writes it to the input uint16_t[22] array |
| 192 | + uint16_t tempOdd, tempEven; //temporary burst values |
| 193 | + for (uint8_t a = 0; a < 22; a++) { //walk through the entire pulse |
| 194 | + tempBurst[a] = 0; //reset value |
| 195 | + if (sideActive[0] == 1 && bufferPrintMode != BUFFER_PRINT_MODE_EVEN) { //if odd side is active |
| 196 | + tempOdd = PRIMITIVE_OVERLAY_ODD & burstBuffer[readPosition[0]][a]; //odd side |
| 197 | + } |
| 198 | + else { |
| 199 | + tempOdd = 0; |
| 200 | + } |
| 201 | + if (sideActive[1] == 1 && bufferPrintMode != BUFFER_PRINT_MODE_ODD) { //if even side is active |
| 202 | + tempEven = PRIMITIVE_OVERLAY_EVEN & burstBuffer[readPosition[1]][a]; //even side |
| 203 | + } |
| 204 | + else { |
| 205 | + tempEven = 0; |
| 206 | + } |
| 207 | + tempBurst[a] = tempBurst[a] | tempEven; //add even |
| 208 | + tempBurst[a] = tempBurst[a] | tempOdd; //add odd |
| 209 | + } |
| 210 | + return tempBurst; |
| 211 | + } |
| 212 | + int32_t GetPosition(uint8_t tempSide) { |
| 213 | + tempSide &= 1; //constrain side |
| 214 | + return positionBuffer[readPosition[tempSide]]; |
| 215 | + } |
| 216 | + uint8_t GetLoopCounter(){ |
| 217 | + return bufferLoopCounter; |
| 218 | + } |
| 219 | + |
| 220 | + private: |
| 221 | +}; |
0 commit comments