-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMean_Var_GHG.py
229 lines (192 loc) · 11.1 KB
/
Mean_Var_GHG.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import numpy as np
from sklearn.preprocessing import StandardScaler
import torch
import torch.nn as nn
import torch.optim as optim
from typing import Literal
class PolicyNetwork(nn.Module):
def __init__(self, input_size_net, hidden_sizes, output_size_net):
super(PolicyNetwork, self).__init__()
# Create a list to hold all layers
layers = [nn.Flatten(),
nn.Linear(input_size_net, hidden_sizes[0]),
nn.BatchNorm1d(hidden_sizes[0]),
nn.ReLU()]
for ii in range(1, len(hidden_sizes)):
layers.append(nn.Linear(hidden_sizes[ii - 1], hidden_sizes[ii]))
layers.append(nn.ReLU())
# Output layer
layers.append(nn.Linear(hidden_sizes[-1], output_size_net))
layers.append(nn.Softmax(dim=-1)) # Apply softmax along the last dimension
# Combine all layers into a sequential block
self.network = nn.Sequential(*layers)
def forward(self, x):
# Pass the input x through the entire network
return self.network(x)
def objective_function(portwealth, portghg_level, rho_coef=0.5, coef_ghg=1):
# Mean Var
U = (portwealth - rho_coef * (portwealth - portwealth.mean()) ** 2 - coef_ghg * portghg_level).mean()
return U
class EralyStopping:
def __init__(self, patience_es, min_delta=0.0, path='policy_network_deep.pth'):
self.patience = patience_es
self.min_delta = min_delta
self.path = path
self.wait = 0
self.best_objective_value = -np.inf
self.earlystop = False
def __call__(self, obj_val, model):
if obj_val > self.best_objective_value:
self.best_objective_value = obj_val
self.wait = 0
self.save_checkpoint(model)
elif obj_val <= self.best_objective_value + self.min_delta:
self.wait += 1
if self.wait > self.patience:
self.earlystop = True
def save_checkpoint(self, model):
torch.save(model.state_dict(), self.path)
def load_checkpoint(self, model):
torch.load(model.state_dict(), self.path)
class OptimizationModel:
def __init__(self, policy_network, optimizer, n_epochs, minibatchsize, niter, input_size, rho, gamma, network_path,
patience, data_in_sample, data_out_of_sample, wealth_init, NRiskyAssets, n_steps, device_p):
self.policy_network = policy_network
self.optimizer = optimizer
self.nepochs = n_epochs
self.minibatchsize = minibatchsize
self.niter = niter
self.input_size = input_size
self.rho = rho
self.gamma = gamma
self.network_path = network_path
self.patience = patience
self.simullogreturns_all_IS = data_in_sample['simullogreturns_all']
self.simulcovariance_IS = data_in_sample['simulcovariance']
self.ghg_paths_all_IS = data_in_sample['ghg_paths_all']
self.simullogreturns_all_OOS = data_out_of_sample['simullogreturns_all']
self.simulcovariance_OOS = data_out_of_sample['simulcovariance']
self.ghg_paths_all_OOS = data_out_of_sample['ghg_paths_all']
self.NRiskyAssets = NRiskyAssets
self.nsteps = n_steps
self.w0 = wealth_init
self.device = device_p
def upper_triangle(self, mat_in):
ind12 = np.triu(np.array(np.arange(1, self.NRiskyAssets * self.NRiskyAssets + 1)).reshape(self.NRiskyAssets,
self.NRiskyAssets))
ind12 = ind12[ind12 != 0] - 1
mat_out = mat_in.reshape((mat_in.shape[0], mat_in.shape[1] * mat_in.shape[2]))[:, ind12]
return mat_out
def prepare_inputs(self, cpath_train, covpaths_train_lag, ghg_path_train_lag, portret_train_in, ghg_level_train_in,
tt_train):
# Apply transformations
log_ghg_path = np.log1p(ghg_path_train_lag) # Log transformation for GHG paths
log_ghg_level = np.log1p(
ghg_level_train_in.detach().cpu().numpy() / (self.w0 * portret_train_in.detach().cpu().numpy()))
standardized_covpaths = StandardScaler().fit_transform(
self.upper_triangle(covpaths_train_lag)) # Standardize covariance
cpath_train[:, 0] = portret_train_in.detach().cpu().numpy()
cpath_train[:, 1] = (tt_train - 1) / self.nsteps
cpath_train[:, 2] = log_ghg_level
cpath_train[:, 3:14] = log_ghg_path
cpath_train[:, 14:] = standardized_covpaths
return torch.tensor(cpath_train, dtype=torch.float32).to(self.device)
def train_model(self):
objective_value_train = torch.Tensor([0.0])
for nn_train in range(self.niter):
# Generate minibatch of random samples
batchrowid = np.array(range(self.minibatchsize)) + nn_train * self.minibatchsize
returnpaths_train = self.simullogreturns_all_IS[batchrowid,]
ghg_path_train = self.ghg_paths_all_IS[batchrowid,]
covpaths_train = self.simulcovariance_IS[batchrowid,]
portret_train = torch.ones(self.minibatchsize).to(self.device)
ghg_level_train = torch.zeros(self.minibatchsize).to(self.device)
cpath_train = np.zeros((self.minibatchsize, self.input_size))
self.optimizer.zero_grad() # Clear accumulated gradients
for tt_train in range(1, self.nsteps):
transformed_input = self.prepare_inputs(cpath_train, covpaths_train[:, :, :, tt_train - 1],
ghg_path_train[:, tt_train - 1, :], portret_train,
ghg_level_train, tt_train)
output = self.policy_network(transformed_input)
portret_old_train = portret_train.clone()
retvec_train = np.reshape(returnpaths_train[:, tt_train], (self.minibatchsize, self.NRiskyAssets))
portret_train = (portret_train *
torch.sum(output * torch.tensor(retvec_train, dtype=torch.float32).to(self.device),
dim=1))
ghgvec_train = np.reshape(ghg_path_train[:, tt_train], (self.minibatchsize, self.NRiskyAssets))
ghg_level_train = ghg_level_train + self.w0 * portret_old_train * torch.sum(
output * torch.tensor(ghgvec_train, dtype=torch.float32).to(self.device), dim=1)
objective_value_train = objective_function(self.w0 * portret_train, ghg_level_train, rho_coef=self.rho,
coef_ghg=self.gamma)
objective_value_train.backward()
self.optimizer.step()
return objective_value_train
def evaluate_model(self, on: Literal['OOS', 'IS'] = 'OOS'):
if on not in ['OOS', 'IS']:
raise ValueError("Parameter 'on' must be either 'OOS' or 'IS'")
self.policy_network.eval()
with torch.no_grad():
numpaths = self.simullogreturns_all_OOS.shape[0]
returnpaths_eval = self.simullogreturns_all_OOS
ghg_path_eval = self.ghg_paths_all_OOS
covpaths_eval = self.simulcovariance_OOS
if on == 'IS':
numpaths = self.simullogreturns_all_IS.shape[0]
returnpaths_eval = self.simullogreturns_all_IS
ghg_path_eval = self.ghg_paths_all_IS
covpaths_eval = self.simulcovariance_IS
portret_eval = torch.ones(numpaths).to(self.device)
ghg_level_eval = torch.zeros(numpaths).to(self.device)
cpath_eval = np.zeros((numpaths, self.input_size))
for tt_eval in range(1, self.nsteps):
transformed_input = self.prepare_inputs(cpath_eval, covpaths_eval[:, :, :, tt_eval - 1],
ghg_path_eval[:, tt_eval - 1, :], portret_eval,
ghg_level_eval, tt_eval)
output = self.policy_network(transformed_input)
portret_old_eval = portret_eval.clone()
retvec_eval = np.reshape(returnpaths_eval[:, tt_eval], (numpaths, self.NRiskyAssets))
portret_eval = portret_eval * torch.sum(output *
torch.tensor(retvec_eval, dtype=torch.float32).to(self.device),
dim=1)
ghgvec_eval = np.reshape(ghg_path_eval[:, tt_eval], (numpaths, self.NRiskyAssets))
ghg_level_eval = ghg_level_eval + self.w0 * portret_old_eval * torch.sum(
output * torch.tensor(ghgvec_eval, dtype=torch.float32).to(self.device), dim=1)
objective_value_eval = objective_function(self.w0 * portret_eval, ghg_level_eval, rho_coef=self.rho,
coef_ghg=self.gamma)
output_list = {'objective_value': objective_value_eval, 'portret': portret_eval, 'ghg_level': ghg_level_eval}
return output_list
def train_evaluate_model(self, ISeval=True):
print('Training started ... ')
es = EralyStopping(patience_es=self.patience, min_delta=0.0, path=self.network_path)
# storing estimates of performance after each epoch
PerfvecIS_treval = torch.tensor([])
PerfvecOOS_treval = torch.tensor([])
PerfvecIS_treval = PerfvecIS_treval.to(self.device)
PerfvecOOS_treval = PerfvecOOS_treval.to(self.device)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(self.optimizer, mode='max', factor=0.5, min_lr=0.001,
patience=5)
for ee in range(self.nepochs):
# Train model
self.policy_network.train(True)
objective_value_train = self.train_model()
objective_value_train = objective_value_train.to(self.device)
PerfvecIS_treval = torch.cat((PerfvecIS_treval, objective_value_train.unsqueeze(0)), dim=0)
if ISeval:
# Evaluate model
objective_value_eval = self.evaluate_model(on='OOS')
objective_value_tensor = torch.tensor([objective_value_eval['objective_value'].item()])
PerfvecOOS_treval = torch.cat((PerfvecOOS_treval, objective_value_tensor), dim=0)
# Check for early stopping
es(objective_value_train.item(), self.policy_network)
if es.earlystop:
print(
f"Early stopping at epoch {ee + 1} with objective value {objective_value_train.item()} and"
f" best value {es.best_objective_value} after {es.wait} epochs")
break
scheduler.step(PerfvecIS_treval[-1])
if (ee + 1) % 10 == 0:
print(f"Epoch {ee + 1}/{self.nepochs} - Final objective value: {objective_value_train.item()}"
f" and learning rate is {self.optimizer.param_groups[0]['lr']}")
if (ee + 1) == self.nepochs:
print(f"Terminated at epoch {ee + 1} with best objective value {es.best_objective_value}")
return PerfvecIS_treval, PerfvecOOS_treval