forked from mynameisfiber/high_performance_python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdiffusion_1d.py
47 lines (34 loc) · 1.06 KB
/
diffusion_1d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#!/usr/bin/env python2.7
import numpy as np
import pylab as py
grid_size = (512, )
def laplacian(grid):
return np.roll(grid, +1) + np.roll(grid, -1) - 2 * grid
def evolve(grid, dt, D=1):
return grid + dt * D * laplacian(grid)
if __name__ == "__main__":
grid = np.zeros(grid_size)
max_val = 1.0
block_low = int(grid_size[0] * .4)
block_high = int(grid_size[0] * .6)
grid[block_low:block_high] = max_val
t = 0
grids = [(t, grid.copy()), ]
for i in xrange(3):
for i in range(5000 * (4 ** i) + 1):
grid = evolve(grid, 0.1)
t += i * 0.1
grids.append((t, grid.copy()))
py.figure()
for i, (t, grid) in enumerate(grids):
py.subplot(len(grids), 1, i + 1)
py.plot(grid)
py.ylabel("t = %0.0f" % t)
py.ylim(ymin=0, ymax=max_val * 1.1)
py.xlim(xmin=0, xmax=grid_size[0])
py.xlabel("Position")
py.subplot(len(grids), 1, 1)
py.title("1D Diffusion of a square function")
py.tight_layout()
py.savefig("images/diffusion_1d.png")
py.show()