forked from mynameisfiber/high_performance_python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnorm_squared.py
57 lines (47 loc) · 1.71 KB
/
norm_squared.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
#!/usr/bin/env python2.7
import sys
import os
sys.path.append(os.path.abspath("../06_matrix/norm/"))
import norm_array
import norm_numpy
import norm_numpy_dot
import norm_python
import norm_python_comprehension
import norm_python_generator
from itertools import cycle
import numpy as np
import pylab as py
plot_name = {
"norm_array" : "norm_square_array",
"norm_numpy" : "norm_square_numpy",
"norm_numpy_dot" : "norm_square_numpy_dot",
"norm_python" : "norm_square_list",
"norm_python_comprehension": "norm_square_list_comprehension",
"norm_python_generator" : "norm_square_generator_comprehension",
}
methods = {plot_name[k]:v for k,v in globals().iteritems() if k.startswith("norm")}
markers = cycle('h*o>Dxsp8')
linestyles = cycle(['-', ':', '--', '-.'])
if __name__ == "__main__":
timings = {k: [] for k in methods}
for exponent in xrange(12, 40):
N = int(1.5 ** exponent)
print "exponent:", exponent
print "N:", N
for name, method in methods.iteritems():
t = method.run_experiment(N, num_iter=5) * 1000.0
timings[name].append((N, t))
print "%s: %f" % (name, t)
timings = list(timings.iteritems())
timings.sort(key = lambda (k, v) : np.mean([i[1] for i in v]), reverse=True)
for name, data in timings:
d = np.asarray(data)
py.plot(d[:, 0], d[:, 1], label=name, marker=markers.next(),
linestyle=linestyles.next(), linewidth=4)
py.title("Runtime for various norm squared routines")
py.xlabel("Vector length")
py.ylabel("Runtime (miliseconds) -- less is better")
py.legend(loc='upper left', handlelength=5)
py.tight_layout()
py.savefig("images/norm_squared.png")
py.show()