-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataWrapping.py
164 lines (104 loc) · 5.95 KB
/
dataWrapping.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import pandas
# from pattern.en import sentiment
# import HTMLParser
import re
import pandas as pd
from collections import Counter
from nltk.corpus import stopwords
import string
from collections import OrderedDict
from nltk import bigrams
from nltk.tokenize import word_tokenize
import matplotlib.pyplot as plt
import numpy as np
# import plotly.plotly as py
# import pandas as pd
# import matplotlib.pyplot as plt
import numpy as np
from sklearn.metrics import recall_score, precision_score, accuracy_score
import math
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import confusion_matrix
from sklearn.feature_selection import RFE
import requests
from bs4 import BeautifulSoup
# import numpy as np
# import matplotlib.pyplot as plt
# from matplotlib import style
# style.use("ggplot")
import os
data_outcome = pd.read_csv("C:\Shashank Reddy\Outcome.csv",sep='\s*,\s*',header=0, encoding='ascii', engine='python')
#print(data_outcome)
data_outcome = data_outcome.fillna("zero")
# outcome dictionary
outcome = {'removed': 1, 'not removed': 2, 'retrieval': 3, 'non retrieval': 4, 'zero' : 0}
data_outcome["Outcome"] = [outcome[item] for item in data_outcome["Outcome"]]
list_outcome = pd.DataFrame(list(data_outcome["Outcome"]))
list_outcome.to_csv(r"C:\Shashank Reddy\FinalOutcome.csv",sep='\t', index=False)
#print(data_outcome)
#data_outcome.to_dense().to_csv(r"C:\Shashank Reddy\FinalOutcome.csv")
sessilelocation = pd.read_csv("C:\Shashank Reddy\SessileLocation.csv",sep='\s*,\s*',header=0, encoding='ascii', engine='python').fillna("zero")
#print(sessilelocation.columns.tolist())
#print(sessilelocation)
location = {'cecal': 1, 'ascending': 2, 'ileum': 3, 'ileocecal': 3, 'hepatic': 4, 'transverse': 5, 'splenic': 6, 'descending': 7, 'sigmoid': 8, 'recto-sigmoid': 9, 'rectal': 10, 'appendix': 11,'zero': 0}
sessilelocation["PositionA"] = [location[item] for item in sessilelocation["PositionA"]]
sessilelocation["PositionB"] = [location[item] for item in sessilelocation["PositionB"]]
sessilelocation["PositionC"] = [location[item] for item in sessilelocation["PositionC"]]
sessilelocation["PositionD"] = [location[item] for item in sessilelocation["PositionD"]]
sessilelocation["PositionE"] = [location[item] for item in sessilelocation["PositionE"]]
sessilelocation["PositionF"] = [location[item] for item in sessilelocation["PositionF"]]
sessilelocation["PositionG"] = [location[item] for item in sessilelocation["PositionG"]]
#print(sessilelocation)
sessileshape = pd.read_csv("C:\Shashank Reddy\SessileShape.csv",sep='\s*,\s*',header=0, encoding='ascii', engine='python').fillna("zero")
#print(sessileshape)
shape = {'zero':0,'sessile':1,'pedunculated':2,'flat':3,'mass':4,'smooth':5,'serrated':6}
sessileshape["Shape"] = [shape[item] for item in sessileshape["Shape"]]
#print(sessileshape)
sessilesize = pd.read_csv("C:\Shashank Reddy\SessileSize.csv",sep='\s*,\s*',header=0, encoding='ascii', engine='python').fillna("zero")
#print(sessilesize)
size = {'zero':0,'diminutive':1,'small':2,'medium':3,'large':4}
sessilesize["Size"] = [size[item] for item in sessilesize["Size"]]
#print(sessilesize)
sessileside = pd.read_csv("C:\Shashank Reddy\Sides.csv",sep='\s*,\s*',header=0, encoding='ascii', engine='python').fillna("zero")
#print(sessileside)
side = {'zero':0,'left':1,'right':2}
sessileside["Sides"] = [side[item] for item in sessileside["Sides"]]
#print(sessileside)
cancer_treatment = pd.read_csv("C:\Shashank Reddy\Treatment.csv",sep='\s*,\s*',header=0, encoding='ascii', engine='python').fillna("zero")
#print(cancer_treatment)
treatment = {'zero':0,'piermeal':1,'cold snare':2,'hot snare':3,'snare':4,'electocautery snare':5,'excisional biopsy':6,'biopsy forcep':7,'cold biopsy':8}
cancer_treatment["Treatment"] = [treatment[item] for item in cancer_treatment["Treatment"]]
list_treatment = pd.DataFrame(list(cancer_treatment["Treatment"]))
list_treatment.to_csv(r"C:\Shashank Reddy\FinalTreatment.csv",sep='\t', index=False)
#print(cancer_treatment)
sessile_number = pd.read_csv("C:\Shashank Reddy\SessileNumber.csv",sep='\s*,\s*',header=0, encoding='ascii', engine='python').fillna("zero")
#print(sessile_number)
number = {'zero':0,'one':1,'two':2,'three':3,'four':4,'five':5,'six':7,'eight':8,'nine':9,'ten':10}
sessile_number["Number1"] = [number[item] for item in sessile_number["Number1"]]
sessile_number["Number2"] = [number[item] for item in sessile_number["Number2"]]
sessile_number["Number3"] = [number[item] for item in sessile_number["Number3"]]
sessile_number["Number4"] = [number[item] for item in sessile_number["Number4"]]
#print(sessile_number)
#************************************* Data Union *********************************************************************************
list_mat1= pd.DataFrame(list(sessilelocation["PositionA"]))
list_mat2= pd.DataFrame(list(sessilelocation["PositionB"]))
list_mat3= pd.DataFrame(list(sessilelocation["PositionC"]))
list_mat4= pd.DataFrame(list(sessilelocation["PositionD"]))
list_mat5= pd.DataFrame(list(sessilelocation["PositionE"]))
list_mat6= pd.DataFrame(list(sessilelocation["PositionF"]))
list_mat7= pd.DataFrame(list(sessilelocation["PositionG"]))
list_mat8= pd.DataFrame(list(sessileshape["Shape"]))
list_mat9= pd.DataFrame(list(sessilesize["Size"]))
list_mat10= pd.DataFrame(list(sessileside["Sides"]))
list_mat11= pd.DataFrame(list(sessile_number["Number1"]))
list_mat12= pd.DataFrame(list(sessile_number["Number2"]))
list_mat13= pd.DataFrame(list(sessile_number["Number3"]))
list_mat14= pd.DataFrame(list(sessile_number["Number4"]))
Final_Data = pd.concat([list_mat1,list_mat2,list_mat3,list_mat4,list_mat5,list_mat6,list_mat7,list_mat8,list_mat9,list_mat10,list_mat11
,list_mat12,list_mat13,list_mat14],axis = 1)
print(Final_Data)
Final_Data.to_csv(r"C:\Shashank Reddy\DataSet_Final.csv",index = False)
#print(Final_Data)