-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvert_to_range_angle_map.m
181 lines (149 loc) · 6.58 KB
/
convert_to_range_angle_map.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
clc
clear all
close all
%% Load Raw Radar Data
datasetnya = readNPY("sample_raw_radar_data\RadarIfxAvian_00\radar.npy");
conf_fname = 'sample_raw_radar_data\RadarIfxAvian_00\config.json';
start_frame = 1;
last_frame = 99;
start_angle = -90;
stop_angle = 90;
conf_fid = fopen(conf_fname);
conf_raw = fread(conf_fid,inf);
conf_str = char(conf_raw');
fclose(conf_fid);
conf_confignya = jsondecode(conf_str);
Radar_Parameter.Num_Tx_Antennas = conf_confignya.device_config.fmcw_single_shape.tx_antennas;
Radar_Parameter.Num_Rx_Antennas= length(conf_confignya.device_config.fmcw_single_shape.rx_antennas);
Radar_Parameter.Mask_Tx_Antennas = 1;
Radar_Parameter.Mask_Rx_Antennas = 7;
Radar_Parameter.Are_Rx_Antennas_Interleaved = 1;
Radar_Parameter.Modulation_Type_Enum = 1;
Radar_Parameter.Chirp_Shape_Enum= 0;
Radar_Parameter.Lower_RF_Frequency_kHz = conf_confignya.device_config.fmcw_single_shape.start_frequency_Hz;
Radar_Parameter.Upper_RF_Frequency_kHz = conf_confignya.device_config.fmcw_single_shape.end_frequency_Hz;
Radar_Parameter.Sampling_Frequency_kHz = conf_confignya.device_config.fmcw_single_shape.sample_rate_Hz/1000;
Radar_Parameter.ADC_Resolution_Bits=12;
Radar_Parameter.Are_ADC_Samples_Normalized =1;
Radar_Parameter.Data_Format_Enum=0;
Radar_Parameter.Chirps_per_Frame=conf_confignya.device_config.fmcw_single_shape.num_chirps_per_frame;
Radar_Parameter.Samples_per_Chirp= conf_confignya.device_config.fmcw_single_shape.num_samples_per_chirp;
Radar_Parameter.Samples_per_Frame=Radar_Parameter.Chirps_per_Frame*Radar_Parameter.Samples_per_Chirp*Radar_Parameter.Num_Rx_Antennas;
Radar_Parameter.Chirp_Time_sec=conf_confignya.device_config.fmcw_single_shape.frame_repetition_time_s;
Radar_Parameter.Pulse_Repetition_Time_sec=conf_confignya.device_config.fmcw_single_shape.chirp_repetition_time_s;
Radar_Parameter.Frame_Period_sec=conf_confignya.device_config.fmcw_single_shape.frame_repetition_time_s;
dummy_size = size(datasetnya);
Frame_Number = dummy_size(1);
NumRXAntenna = Radar_Parameter.Num_Rx_Antennas;
Frame = datasetnya;
%% Setup Configuration
% fprintf('Radar SDK Version: %s\n', get_version_full());
% fprintf('Sensor: %s\n', device.get_sensor_type());
% Get metrics and print them
% chirp_loop = sequence.loop.sub_sequence.contents;
% metrics = device.metrics_from_sequence(chirp_loop);
%
% disp(metrics);
%
% % Get maximum range
% max_range_m = metrics.max_range_m;
% chirp = chirp_loop.loop.sub_sequence.contents.chirp;
% num_rx_antennas = num_rx_antennas_from_rx_mask(chirp.rx_mask);
% Create objects for Range-Doppler, Digital Beam Forming, and plotting.
config_chirp_num_samples = Radar_Parameter.Samples_per_Chirp;
config_num_chirps = Radar_Parameter.Chirps_per_Frame;
num_rx_antennas = Radar_Parameter.Num_Rx_Antennas;
num_beams = 27;
max_angle_degrees = 40 ;
mti_alpha = 0.8;
d_by_lambda = 0.5;
c = 3e8; % Speed of light (m/s)
CRR = 1/Radar_Parameter.Chirp_Time_sec; % Chirp repetition rate (Hz)
% FRR=1/Radar_Parameter.Frame_Period_sec;% Frame repetition rate (Hz)
BW = (Radar_Parameter.Upper_RF_Frequency_kHz-Radar_Parameter.Lower_RF_Frequency_kHz)*1000; % Bandwidth (Hz)
range_res = c/(2*BW);
max_range = range_res*fix(Radar_Parameter.Sampling_Frequency_kHz*1e3/CRR)/2;
% t4 = [30 35 45 60 90 135 200 270]*pi/180;
% r4 = [0.8:0.4:2.8 3:0.2:4];
t4 = linspace(deg2rad(start_angle),deg2rad(stop_angle),4);
% r4 = linspace(0,max_range,10);
r4 = 0:0.25:max_range;
%% Create The Model
doppler_modelnya = helper_model_doppler_algo(config_chirp_num_samples, config_num_chirps, num_rx_antennas,mti_alpha);
dbf_modelnya = helper_model_DigitalBeamForming(num_rx_antennas, num_beams, max_angle_degrees,d_by_lambda);
% plot = LivePlot(max_angle_degrees, max_range_m);
raw_i = start_frame; % First Index of Frame
end_raw_i = dummy_size(1); % Last Index of Frame
if(dummy_size(1) > last_frame)
end_raw_i = last_frame; % Last Index of Frame
end
%
figure("Name","Range Angle Map",'color','white')
grid off
axprop = {'DataAspectRatio',[1 1 8],'View', [-12 38], ...
'XTick',[], 'YTick',[], ...
'XColor','none','YColor','none' ...
};
while raw_i<end_raw_i
% Get frame data
frame = squeeze(Frame(raw_i,:, :, :));
% Initialize variables
rd_spectrum = zeros(config_chirp_num_samples, 2 * config_num_chirps, num_rx_antennas);
beam_range_energy = zeros(config_chirp_num_samples, num_beams);
% beam_range_energy = zeros(config_chirp_num_samples*2, num_beams);
for i_ant = 1:num_rx_antennas % Loop through antennas (1-based indexing in MATLAB)
% Current RX antenna
mat = squeeze(frame(i_ant, :, :)); % Extract antenna data
% Compute Doppler spectrum
% dfft_dbfs = doppler.compute_doppler_map(mat, i_ant);
[dfft_dbfs,doppler_modelnya] = helper_compute_dopplermap(mat, i_ant,doppler_modelnya);
rd_spectrum(:, :, i_ant) = dfft_dbfs;
end
% Compute Range-Angle map
% rd_beam_formed = dbf.run(rd_spectrum);
[rd_beam_formed,dbf_modelnya] = helper_DigitalBeamForming_run(rd_spectrum,dbf_modelnya);
for i_beam = 1:num_beams
% Extract Doppler for current beam
doppler_i = rd_beam_formed(:, :, i_beam);
% Beamforming - accumulate energy across range bins
% dummy_beam = sum(abs(doppler_i), 1) / sqrt(num_beams);
beam_range_energy(:, i_beam) = beam_range_energy(:, i_beam) + sum(abs(doppler_i).^2, 2) / sqrt(num_beams);
end
% Maximum energy in Range-Angle map
max_energy = max(beam_range_energy(:));
% Rescale map (consider a proper peak detection algorithm for improvement)
scale = 150;
beam_range_energy = scale * (beam_range_energy / max_energy - 1);
% Find dominant angle
% [~, idx] = find(beam_range_energy == max(beam_range_energy(:)));
% angle_degrees = linspace(-max_angle_degrees, max_angle_degrees, num_beams)(idx);
%
% % Call your plotting function (replace with your implementation)
% % plot.draw(beam_range_energy, f"Range-Angle map using DBF, angle={angle_degrees:+02.0f} degrees");
% surf(beam_range_energy)
% view(2)
% colormap default
% colorbar
% hold on
polarplot3d(beam_range_energy, ...
'PlotType','surfcn',...
'radialrange',[min(r4) max(r4)],...
'angularrange',[min(t4) max(t4)], ...
'polargrid',{r4 t4}, ...
'RadLabelLocation',{45 'max'} ...
);
grid off
view(2);
set(gca, ...
'dataaspectratio',[1 1 1], ...
'view',[-90 90], ...
'XTick',[], ...
'XColor','none'...
);
ylabel("Range (m)")
fprintf("Frame - %i of %i \n",raw_i,dummy_size(1))
% view([-18 76]);
% view(2);
drawnow
raw_i = raw_i + 1;
end