-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsurvey.R
501 lines (390 loc) · 18.5 KB
/
survey.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
# # # # # # # # 80
library(dplyr)
library(ggplot2)
library(here)
library(tidyr)
library(Hmisc)
source(file=here("my_helper_functions.R"))
survey_in = filename2df('BCMDatathonSurvey_DATA_2021-08-10.csv')
#### Shorten long column names and tidy contents
survey_in %>%
rename(
id = Record.ID,
sid = Survey.Identifier,
time = Survey.Timestamp,
acadRank = Academic.rank,
acadRank.text = Other..specify,
dept.text = Primary.department.section.research.center,
years = Number.of.years.at.BCM,
prior.hack = I.participated.previously.in.a.hackathon.datathon,
prior.emrdata = I.had.experience.using.electronic.medical.record..EMR..data.for.research.or.quality.improvement.prior.to.this.datathon,
teamsize = Number.of.people.on.your.datathon.team,
workedTeam = Have.you.worked.with.the.members.of.your.datathon.team.before, # FIXME - camelcase
role.clinical = Your.role.on.your.team...mark.all.that.apply...choice.Content..clinical..expert.,
role.lead = Your.role.on.your.team...mark.all.that.apply...choice.Project.lead.,
role.reviewer = Your.role.on.your.team...mark.all.that.apply...choice.Chart.reviewer.,
role.datasci = Your.role.on.your.team...mark.all.that.apply...choice.Data.scientist.,
role.stats = Your.role.on.your.team...mark.all.that.apply...choice.Statistical.analyst.,
role.datawarehouse = Your.role.on.your.team...mark.all.that.apply...choice.Data.warehouse.expert.,
role.datamgr = Your.role.on.your.team...mark.all.that.apply...choice.Data.manager.,
role.learner = Your.role.on.your.team...mark.all.that.apply...choice.Learner.,
role.other = Your.role.on.your.team...mark.all.that.apply...choice.Other..please.specify..,
role.text = Other..specify.1,
know.avail.pre = How.knowledgeable.were.you.about.data.availability.at.BCM.prior.to.the.datathon,
know.avail.post = How.knowledgeable.were.you.about.data.availability.at.BCM.following.the.datathon,
know.use.pre = How.knowledgeable.were.you.about.how.to.use.the.BCM.data.warehouse.prior.to.the.datathon,
know.use.post = How.knowledgeable.were.you.about.how.to.use.the.BCM.data.warehouse.following.the.datathon,
know.limit.pre = What.was.your.understanding.of.BCM.data.warehouse.limitations.prior.to.the.datathon,
know.limit.post = What.was.your.understanding.of.BCM.data.warehouse.limitations.following.the.datathon,
effortHrs = Estimate.how.many.person.hours.you..personally..spent.on.datathon.work..including.time.spent.with.BCM.information.technology..IT.,
itpercent = What.percentage.of.the.time.spent.on.datathon.work.was.with.BCM.IT,
hard.datapull = How.difficult.was.obtaining.information.from.the.BCM.Data.warehouse,
hard.datawork = How.difficult.was.working.with.BCM.Data.warehouse.files,
completed = I.completed.my.project.by.the.end.of.the.datathon, # FIXME var name is too close to another
answered = I.successfully.answered.my.clinical.question,
collab.outside = I.collaborated.with.individuals.outside.of.my.department,
collab.new = I.collaborated.with.new.individuals.as.part.of.the.datathon,
future.studies = I.plan.to.conduct.future.studies.using.data.from.the.BCM.warehouse,
pub.abstract = Our.team.datathon.project.resulted.in.a.scientific.abstract.for.a.local.or.national.meeting,
pub.paper = Our.team.datathon.project.resulted.in.a.publication,
valuable = Participating.in.the.BCM.datathon.was.a.valuable.experience,
future.datathon = I.would.participate.in.a.future.BCM.datathon,
comment.text = What.worked.well.or.didn.t.work..or.general.comments,
complete = Complete.
) %>%
mutate_at(vars(prior.hack, starts_with("role"), -role.text, completed, answered, collab.outside, collab.new, pub.abstract, pub.paper, complete, workedTeam), ~ truefalse(.)) %>%
mutate_at(vars(prior.emrdata, starts_with("know"), starts_with("hard"), starts_with("future"), valuable), ~ firstchar2num(.)) %>%
mutate_at(vars(teamsize), ~ fix_teamsize(.)) %>%
mutate(n_roles = role.clinical + role.lead + role.reviewer + role.datasci +
role.stats + role.datawarehouse + role.datamgr + role.learner + role.other) %>%
mutate_at(vars(acadRank), ~ case_when(. == "Other (e.g. Staff, Instructor)" ~ "Staff", TRUE ~ .)) -> survey_tidy
# Recoded as "staff" because I inspected all 7 and that's what they are.
#### Calculate new gathered data frames about pre/post questions
jitter_absolute = 0.02
jx = jitter_absolute
jy = 5 * jitter_absolute
survey_tidy %>%
gather(`know.use.pre`, `know.use.post`, key="prepost", value="know.use") %>%
mutate(numeric_prepost = case_when(prepost == "know.use.pre" ~ 0, prepost == "know.use.post" ~ 1),
eps_x = runif(nrow(survey_tidy) * 2, -1 * jx, jx),
eps_y = runif(nrow(survey_tidy) * 2, -1 * jy, jy)) -> use
survey_tidy %>%
gather(`know.avail.pre`, `know.avail.post`, key="prepost", value="know.avail") %>%
mutate(numeric_prepost = case_when(prepost == "know.avail.pre" ~ 0, prepost == "know.avail.post" ~ 1)) %>%
select(id, numeric_prepost, know.avail) -> available
survey_tidy %>%
gather(`know.limit.pre`, `know.limit.post`, key="prepost", value="know.limit") %>%
mutate(numeric_prepost = case_when(prepost == "know.limit.pre" ~ 0, prepost == "know.limit.post" ~ 1)) %>%
select(id, numeric_prepost, know.limit) -> limit
use %>%
full_join(available, by=c("id", "numeric_prepost")) %>%
full_join(limit, by=c("id", "numeric_prepost")) -> gathered_all # this goes into individual paired plots
gathered_all %>%
mutate(use = know.use + eps_y, avail = know.avail + eps_y, limit = know.limit + eps_y,
nprepost = numeric_prepost + eps_x) %>%
select(id, nprepost, use, avail, limit) %>%
gather(`use`, `avail`, `limit`, key="dimension", value="knowledge") %>%
mutate_at(vars(dimension), ~ case_when(. == "use" ~ "How to use data warehouse",
. == "avail" ~ "Data availability",
. == "limit" ~ "Data warehouse limitations",
TRUE ~ .)) -> double_gathered # goes into one big facetted paired plot
#### Calc data frame pertaining to team role plotting
decode_role = data.frame(
long = c("Clinician", "Lead", "Chart rev.", "Statistics", "Data whse.", "Data mgr.", "Learner", "Data sci.", "Other"),
abbr = c("clin", "lead", "rev", "stat", "dataware", "datamgr", "learn", "datasci", "other")
)
roles_ordered = decode_role$long[1:7]
survey_tidy %>%
summarise_at(vars(starts_with("role."), -role.text), sum) %>%
rename(clin=role.clinical, lead=role.lead, rev=role.reviewer, stat=role.stats,
dataware=role.datawarehouse, datamgr=role.datamgr,
learn=role.learner, , datasci=role.datasci, other=role.other) %>%
gather(`clin`, `lead`, `rev`, `stat`,
`dataware`, `datamgr`,
`learn`, `datasci`, `other`, key="role", value="count") %>%
mutate(role_description = decode_role$long[decode_role$abbr == role],
percent = round(100 * count / nrow(survey_in), 1)) -> role_count_toplot
#### Calculate fancy combinatorics about those who checked >1 role
# Slice out certain survey Qs & subjects.
# --> 11 people * 7 roles. Looks like:
# 0 0 0 1 0 1 0
# 1 0 1 1 0 0 0
# ...
survey_tidy %>%
filter(n_roles > 1) %>%
select(role.clinical, role.lead, role.reviewer, role.stats, role.datawarehouse,
role.datamgr, role.learner, n_roles) %>% # no datasci/other
rename(clin=role.clinical, lead=role.lead, rev=role.reviewer, stat=role.stats,
dataware=role.datawarehouse, datamgr=role.datamgr,
learn=role.learner) -> role_matrix
# Encode roles as 1..7
# -->
# 0 0 0 4 0 6 0
# 1 0 3 4 0 0 0
# ...
# Fixme - may be a less fragile way to do the 1..7 coding/decoding
role_matrix %>%
transmute(clin=clin, lead=lead*2, rev=rev*3, stat=stat*4, dataware=dataware*5,
datamgr=datamgr*6, learn=learn*7) -> role_mat_multiplied
# Build up a data frame of role a:b pairings (edges)
# Each subject has (7 Choose 2 = 7*6/2) = 21 edges. (Complete graph K_7)
# Therefore for 11 Ss, this is 11*21 rows. 231 row * 2 col data.frame like:
# 0 2
# 0 3
# 2 3
# ...one row per possible role pairing in K_7, for each person.
# Zeroes mean they didn't check that role.
# Fixme - could I do this cleaner with a gather() instead?
role_ab_cooccur = data.frame(a=numeric(), b=numeric()) # empty
for (i in 1:nrow(role_mat_multiplied)) {
myrow = role_mat_multiplied[i,]
data.frame(t(combn(myrow, 2))) %>% # ea col comes out as list, not numeric
transmute(a=as.numeric(X1), b=as.numeric(X2)) -> mycombos
bind_rows(role_ab_cooccur, mycombos) -> role_ab_cooccur
}
# Filter to <<231 rows * still 2 col
role_ab_cooccur %>%
filter(a > 0) %>%
filter(b > 0) %>%
mutate(
role_a = factor(roles_ordered[a], levels=roles_ordered),
role_b = factor(roles_ordered[b], levels=roles_ordered)
) -> role_ab_cooccur
# Build a MAX 21-row table with columns a,b,n (no a,b dups)
# where a in 1..7, b in 1..7
# and where n is the count (value of LU triangle matrix element M_{a,b}, a<b)
# n ALWAYS > 0 (in other words, skip all elements == 0).
# More useful for printing than heatmap plotting.
role_ab_cooccur %>%
group_by(a, b, role_a, role_b) %>%
summarise(Count = n()) %>%
arrange(desc(Count)) -> unrolled_heatmap
zero_heatmap = data.frame(a=numeric(), b=numeric(),
role_a = factor(, levels=roles_ordered),
role_b = factor(, levels=roles_ordered),
Count = numeric())
for (i in 1:length(roles_ordered)) {
for (j in 1:length(roles_ordered)) {
myrow = data.frame(a=i, b=j,
role_a = factor(roles_ordered[i], levels=roles_ordered),
role_b = factor(roles_ordered[j], levels=roles_ordered),
Count = 0
)
if (i < j) { # force triangular matrix
bind_rows(zero_heatmap, myrow) -> zero_heatmap
}
}
}
# build exactly 21-row df with n=whatever but now allowed to be 0.
# Useful for plotting heatmap now.
bind_rows(zero_heatmap, unrolled_heatmap) %>%
group_by(a, b, role_a, role_b) %>%
summarise(Count = sum(Count)) -> zero_filled_heatmap
#### Calculate new dataframe about datathon goals/success:
#### workedTeam, collab.outside, collab.new, completed, answered, pub.abstract, pub.paper
survey_tidy %>%
select(id, workedTeam, collab.outside, collab.new, completed, answered, pub.abstract, pub.paper) %>%
mutate(workedTeamReverse = 1 - workedTeam) %>%
gather(`workedTeamReverse`, `collab.outside`, `collab.new`, `completed`,
`answered`, `pub.abstract`, `pub.paper`, key = "Dimension", value = "Success_nonfactor") %>%
filter(!is.na(Success_nonfactor)) %>%
mutate_at(vars(Success_nonfactor), ~ case_when(
. == 1 ~ "Fully",
. == 0.5 ~ "Partially",
. == 0 ~ "None")) %>%
mutate_at(vars(Dimension), ~ case_when(
. == "workedTeamReverse" ~ "Collab. totally\nnew team",
. == "collab.outside" ~ "Collaborated\noutside",
. == "collab.new" ~ "Collab. w/\nany new",
. == "completed" ~ "Completed\nproject",
. == "answered" ~ "Answered\nquestion",
. == "pub.abstract" ~ "Published\nabstract",
. == "pub.paper" ~ "Published\npaper",
TRUE ~ .)) %>%
mutate(Success = factor(Success_nonfactor, levels=c("Fully","Partially","None"), ordered=TRUE)) -> collab_success
#### Tables, Univariate
say('Dimensions of survey_in')
dim(survey_in)
say("TABLES")
cat("\nacadRank: *t1\n"); table_pct(survey_tidy$acadRank)
cat("\nprior.hack: *t1\n"); table_pct(survey_tidy$prior.hack)
cat("\nt1*\n")
cat("\nworkedTeam:"); addmargins(table(survey_tidy$workedTeam))
cat("\ncompleted:"); addmargins(table(survey_tidy$completed))
cat("\nanswered:"); addmargins(table(survey_tidy$answered))
cat("\ncollab.outside:"); addmargins(table(survey_tidy$collab.outside))
cat("\ncollab.new:"); addmargins(table(survey_tidy$collab.new))
cat("\npub.abstract:"); addmargins(table(survey_tidy$pub.abstract))
cat("\npub.paper:"); addmargins(table(survey_tidy$pub.paper))
cat("\ncomplete:"); addmargins(table(survey_tidy$complete))
say("role_count_toplot *t1")
role_count_toplot %>%
arrange(desc(count))
cat("\nt1*\n")
say("Free text ranks (other)")
survey_tidy %>%
filter(acadRank == "Staff") %>%
select(acadRank.text)
say("Quantiles")
cat("\nYears at BCM *t1\n")
quantile(survey_tidy$years, na.rm=TRUE)
cat("\nTeam size, quantiles *t1\n")
quantile(survey_tidy$teamsize, na.rm=TRUE)
cat("\nPerson-hours spent, quantiles *t1\n")
quantile(survey_tidy$effortHrs, na.rm=TRUE)
cat("\nPercent time spent with IT, quantiles *t1\n")
quantile(survey_tidy$itpercent, na.rm=TRUE)
cat("\nt1*\n")
say("Selected Likert tables")
cat("\nvaluable ----\n"); table_pct(survey_tidy$valuable)
cat("\nfuture.datathon ----\n"); table_pct(survey_tidy$future.datathon)
cat("\nprior.emrdata ---- *t1\n"); table_pct(survey_tidy$prior.emrdata)
cat("\nt1*\n")
cat("\nfuture.studies ----\n"); table_pct(survey_tidy$future.studies)
#### Tables, role co-occurence
say("Multiple team roles (role_matrix)")
role_matrix
say("unrolled heatmap")
unrolled_heatmap
#### Plots (univar)
qplot(survey_tidy$years, binwidth=2) +
labs(x = NULL, title = "Number of years at BCM") +
xlim(0,NA) -> uni_yrs
qplot(survey_tidy$teamsize, binwidth=2) +
labs(x = NULL, title = "Number of people on datathon team") +
xlim(0,NA) -> uni_teamsize
qplot(survey_tidy$effortHrs, binwidth=10) + labs(x = NULL, title = "Person-hours worked on datathon") -> uni_effortHrs
qplot(survey_tidy$itpercent, binwidth=10) + labs(x = NULL, title = "Percentage of time spent with BCM IT") -> uni_itpercent
# fixme - maybe? Calculate split into IT plus my hours, plot as stacked.
qplot(survey_tidy$n_roles, binwidth=1) + labs(x = NULL, title = "Number of roles per participant") -> uni_nroles
gglikert(aes(x = hard.datapull)) + labs(x = NULL, y = NULL, title = "How difficult was obtaining data?") -> uni_hard.datapull
gglikert(aes(x = hard.datawork)) + labs(x = NULL, y = NULL, title = "How difficult was working with data?") -> uni_hard.datawork
gglikert(aes(x = valuable)) + labs(x = NULL, y = NULL, title = "\"Participating was a valuable\nexperience.\"") -> uni_valuable
gglikert(aes(x = future.datathon)) + labs(x = "Level of agreement", y = "Count", title = "\"I would participate in a future\ndatathon.\"") -> uni_future.datathon ## pptx
gglikert(aes(x = prior.emrdata)) + labs(x = "Level of experience", y = "Count", title = "\"I had prior experience using\nEMR data.\"") -> uni_prior.emrdata ## pptx
gglikert(aes(x = future.studies)) + labs(x = "Level of agreement", y = "Count", title = "\"I plan to conduct future studies\nusing BCM DW.\"") -> uni_future.studies ## pptx
qplot(factor(survey_tidy$acadRank,
levels=c("Student", "Fellow", "Staff", "Assistant", "Associate", "Full"))) +
labs(x = "Rank", y="Count", title = "Academic rank") -> acadRankPlot # pptx
ggplot(role_count_toplot, aes(role_description, count)) +
geom_col() +
labs(x = NULL, title = "Role on team") -> barmaybe
ggplot(zero_filled_heatmap, aes(role_a, role_b, label = Count)) +
geom_tile(aes(fill = Count)) +
geom_label() +
labs(
title = "Co-occurrence of roles, for those with >1 role",
x="Role A",
y="Role B"
) -> multi_role_heatmap
ggplot(collab_success, aes(Dimension)) +
geom_bar(aes(fill = Success)) +
labs(x="Datathon goal") +
scale_fill_grey() -> success_stack
#### Paired pre/post hypoth tests and plots
w_use = wilcox.test(
survey_tidy$know.use.pre,
survey_tidy$know.use.post,
paired = TRUE, conf.int=TRUE, exact=FALSE # "exact = FALSE" because can't do exact w/ zeroes or ties
)
w_avail = wilcox.test(
survey_tidy$know.avail.pre,
survey_tidy$know.avail.post,
paired = TRUE, conf.int=TRUE, exact=FALSE
)
w_limit = wilcox.test(
survey_tidy$know.limit.pre,
survey_tidy$know.limit.post,
paired = TRUE, conf.int=TRUE, exact=FALSE
)
c_use = gathered2chitrend(use %>% rename(score = know.use))
t_use = t.test(survey_tidy$know.use.pre, survey_tidy$know.use.post, paired = TRUE)
c_avail = gathered2chitrend(available %>% rename(score = know.avail))
t_avail = t.test(survey_tidy$know.avail.pre, survey_tidy$know.avail.post, paired = TRUE)
c_limit = gathered2chitrend(limit %>% rename(score = know.limit))
t_limit = t.test(survey_tidy$know.limit.pre, survey_tidy$know.limit.post, paired = TRUE)
say("Knowl about how to use DW")
w_use
c_use
t_use
say("Knowl about dat avail")
w_avail
c_avail
t_avail
say("Underst of DW limitations")
w_limit
c_limit
t_limit
## pptx
ggplot(gathered_all, aes(x = numeric_prepost + eps_x, y = know.use + eps_y, group = id)) +
geom_point() +
geom_line() +
scale_x_continuous(breaks = c(0,1), labels = c("Pre", "Post")) +
labs(title="Knowledge about how to use\nthe data warehouse", y=NULL, x=NULL,
subtitle= htests_to_subtitle(w_use, c_use, t_use)) -> paired1
## pptx
ggplot(gathered_all, aes(x = numeric_prepost + eps_x, y = know.avail + eps_y, group = id)) +
geom_point() +
geom_line() +
scale_x_continuous(breaks = c(0,1), labels = c("Pre", "Post")) +
labs(title="Knowledge about data\navailability", y=NULL, x=NULL,
subtitle= htests_to_subtitle(w_avail, c_avail, t_avail)) -> paired2
## pptx
ggplot(gathered_all, aes(x = numeric_prepost + eps_x, y = know.limit + eps_y, group = id)) +
geom_point() +
geom_line() +
scale_x_continuous(breaks = c(0,1), labels = c("Pre", "Post")) +
labs(title="Understanding of data\nwarehouse limitations", y=NULL, x=NULL,
subtitle= htests_to_subtitle(w_limit, c_limit, t_limit)) -> paired3
## facet
ggplot(double_gathered, aes(x = nprepost, y = knowledge, group = id)) +
geom_point() +
geom_line() +
scale_x_continuous(breaks = c(0,1), labels = c("Before", "After")) +
labs(x = NULL, y = "Self-reported knowledge") +
facet_wrap(vars(dimension), nrow = 2) -> facet
# fixme - candidate strata: years, effort, prior.emrdata,
#### Write to plot files
say('End of text output. Now plotting.')
pdf(here("outputs", "Rplots_survey.pdf"))
uni_yrs
acadRankPlot
uni_teamsize
barmaybe
uni_nroles
multi_role_heatmap
uni_effortHrs
uni_itpercent
uni_hard.datapull
uni_hard.datawork
uni_valuable
uni_future.datathon
uni_prior.emrdata
uni_future.studies
paired1
paired2
paired3
facet
success_stack
dev.off()
# PNGs for AMIA talk slides
ranktheme = theme(
plot.title = element_text(size = 30),
axis.title = element_text(size = 30),
axis.text.x = element_text(size = 15),
axis.text.y = element_text(size = 30)
)
ggsave(here('pngs-conf', 'amia-1-acadrank.png'), acadRankPlot + ranktheme)
ggsave(here('pngs-conf', 'amia-2-priorexp.png'), uni_prior.emrdata + gfontsize(30))
ggsave(here('pngs-conf', 'amia-4-futurethon.png'), uni_future.datathon + gfontsize(30))
ggsave(here('pngs-conf', 'amia-5-futurestud.png'), uni_future.studies + gfontsize(30))
ggsave(here('pngs-conf', 'amia-6-pair1.png'), paired1 + gfontsize(30))
ggsave(here('pngs-conf', 'amia-7-pair2.png'), paired2 + gfontsize(30))
ggsave(here('pngs-conf', 'amia-8-pair3.png'), paired3 + gfontsize(30))
# paper
ggsave(here('pngs-paper', 'facet.png'), facet)
ggsave(here('pngs-paper', 'success_stack.png'), success_stack)
ggsave(here('pngs-paper', 'roles.png'), barmaybe + labs(x="Role", title=NULL))
ggsave(here('pngs-paper', 'facet.eps'), facet)
ggsave(here('pngs-paper', 'success_stack.eps'), success_stack)
ggsave(here('pngs-paper', 'roles.eps'), barmaybe + labs(x="Role", title=NULL))