-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVariableTypeSubset.cpp
315 lines (298 loc) · 12.4 KB
/
VariableTypeSubset.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
// Subset of torch/csrc/autograd/generated/VariableTypeEverything.cpp
#include "torch/csrc/autograd/VariableTypeUtils.h"
#include <ATen/TypeDefault.h>
#include <ATen/core/op_registration/op_registration.h>
// @generated from tools/autograd/templates/VariableType.cpp
// NOTE [Sharded File]: on this file's split-into-shards state
//
// Back in the good old days, VariableType.cpp was generated as one
// file with every function in it, and everything was great and
// simple.
//
// However, this file was also very large (over 36,000 lines), and
// compiling it was very slow, and in fact was a significant
// bottleneck for incremental rebuilds. To address this, we now
// generate the file split across multiple shards, named
// VariableType_0.cpp and so on, which can be compiled in parallel.
//
// For ease of inspection and debugging, so that it's not necessary to
// go rooting around in multiple files, we also generate all the
// functions together in VariableTypeEverything.cpp. This generated
// file is only for convenience; it's not actually used in the
// build. If the file you're looking at now is one of the shards, you
// may want to switch over to the Everything variant to make you
// grepping smoother.
using namespace at;
using namespace torch::autograd::generated;
namespace torch { namespace autograd {
namespace VariableType {
namespace {
Tensor mul(const Tensor & self, const Tensor & other) {
RECORD_FUNCTION("mul", std::vector<c10::IValue>({self, other}), Node::peek_at_next_sequence_nr());
auto& self_ = unpack(self, "self", 0);
auto& other_ = unpack(other, "other", 1);
std::shared_ptr<MulBackward0> grad_fn;
if (compute_requires_grad( self, other )) {
grad_fn = std::shared_ptr<MulBackward0>(new MulBackward0(), deleteNode);
grad_fn->set_next_edges(collect_next_edges( self, other ));
if (grad_fn->should_compute_output(1)) {
grad_fn->self_ = SavedVariable(self, false);
}
if (grad_fn->should_compute_output(0)) {
grad_fn->other_ = SavedVariable(other, false);
}
}
torch::jit::Node* node = nullptr;
std::shared_ptr<jit::tracer::TracingState> tracer_state;
if (jit::tracer::isTracing()) {
tracer_state = jit::tracer::getTracingState();
at::Symbol op_name;
op_name = jit::Symbol::fromQualString("aten::mul");
node = tracer_state->graph->create(op_name, /*num_outputs=*/0);
jit::tracer::recordSourceLocation(node);
jit::tracer::addInputs(node, "self", self);
jit::tracer::addInputs(node, "other", other);
tracer_state->graph->insertNode(node);
jit::tracer::setTracingState(nullptr);
}
#ifndef NDEBUG
c10::optional<Storage> self__storage_saved =
self_.has_storage() ? c10::optional<Storage>(self_.storage()) : c10::nullopt;
c10::intrusive_ptr<TensorImpl> self__impl_saved;
if (self_.defined()) self__impl_saved = self_.getIntrusivePtr();
c10::optional<Storage> other__storage_saved =
other_.has_storage() ? c10::optional<Storage>(other_.storage()) : c10::nullopt;
c10::intrusive_ptr<TensorImpl> other__impl_saved;
if (other_.defined()) other__impl_saved = other_.getIntrusivePtr();
#endif
auto tmp = ([&]() {
at::AutoNonVariableTypeMode non_var_type_mode(true);
return at::mul(self_, other_);
})();
auto result = std::move(tmp);
#ifndef NDEBUG
if (self__storage_saved.has_value())
AT_ASSERT(self__storage_saved.value().is_alias_of(self_.storage()));
if (self__impl_saved) AT_ASSERT(self__impl_saved == self_.getIntrusivePtr());
if (other__storage_saved.has_value())
AT_ASSERT(other__storage_saved.value().is_alias_of(other_.storage()));
if (other__impl_saved) AT_ASSERT(other__impl_saved == other_.getIntrusivePtr());
#endif
if (grad_fn) {
set_history(flatten_tensor_args( result ), grad_fn);
}
if (tracer_state) {
jit::tracer::setTracingState(std::move(tracer_state));
jit::tracer::addOutput(node, result);
}
return result;
}
Tensor add(const Tensor & self, const Tensor & other, Scalar alpha) {
RECORD_FUNCTION("add", std::vector<c10::IValue>({self, other, alpha}), Node::peek_at_next_sequence_nr());
auto& self_ = unpack(self, "self", 0);
auto& other_ = unpack(other, "other", 1);
std::shared_ptr<AddBackward0> grad_fn;
if (compute_requires_grad( self, other )) {
grad_fn = std::shared_ptr<AddBackward0>(new AddBackward0(), deleteNode);
grad_fn->set_next_edges(collect_next_edges( self, other ));
grad_fn->alpha = alpha;
}
torch::jit::Node* node = nullptr;
std::shared_ptr<jit::tracer::TracingState> tracer_state;
if (jit::tracer::isTracing()) {
tracer_state = jit::tracer::getTracingState();
at::Symbol op_name;
op_name = jit::Symbol::fromQualString("aten::add");
node = tracer_state->graph->create(op_name, /*num_outputs=*/0);
jit::tracer::recordSourceLocation(node);
jit::tracer::addInputs(node, "self", self);
jit::tracer::addInputs(node, "other", other);
jit::tracer::addInputs(node, "alpha", alpha);
tracer_state->graph->insertNode(node);
jit::tracer::setTracingState(nullptr);
}
#ifndef NDEBUG
c10::optional<Storage> self__storage_saved =
self_.has_storage() ? c10::optional<Storage>(self_.storage()) : c10::nullopt;
c10::intrusive_ptr<TensorImpl> self__impl_saved;
if (self_.defined()) self__impl_saved = self_.getIntrusivePtr();
c10::optional<Storage> other__storage_saved =
other_.has_storage() ? c10::optional<Storage>(other_.storage()) : c10::nullopt;
c10::intrusive_ptr<TensorImpl> other__impl_saved;
if (other_.defined()) other__impl_saved = other_.getIntrusivePtr();
#endif
auto tmp = ([&]() {
at::AutoNonVariableTypeMode non_var_type_mode(true);
return at::add(self_, other_, alpha);
})();
auto result = std::move(tmp);
#ifndef NDEBUG
if (self__storage_saved.has_value())
AT_ASSERT(self__storage_saved.value().is_alias_of(self_.storage()));
if (self__impl_saved) AT_ASSERT(self__impl_saved == self_.getIntrusivePtr());
if (other__storage_saved.has_value())
AT_ASSERT(other__storage_saved.value().is_alias_of(other_.storage()));
if (other__impl_saved) AT_ASSERT(other__impl_saved == other_.getIntrusivePtr());
#endif
if (grad_fn) {
set_history(flatten_tensor_args( result ), grad_fn);
}
if (tracer_state) {
jit::tracer::setTracingState(std::move(tracer_state));
jit::tracer::addOutput(node, result);
}
return result;
}
Tensor sub(const Tensor & self, const Tensor & other, Scalar alpha) {
RECORD_FUNCTION("sub", std::vector<c10::IValue>({self, other, alpha}), Node::peek_at_next_sequence_nr());
auto& self_ = unpack(self, "self", 0);
auto& other_ = unpack(other, "other", 1);
std::shared_ptr<SubBackward0> grad_fn;
if (compute_requires_grad( self, other )) {
grad_fn = std::shared_ptr<SubBackward0>(new SubBackward0(), deleteNode);
grad_fn->set_next_edges(collect_next_edges( self, other ));
grad_fn->alpha = alpha;
}
torch::jit::Node* node = nullptr;
std::shared_ptr<jit::tracer::TracingState> tracer_state;
if (jit::tracer::isTracing()) {
tracer_state = jit::tracer::getTracingState();
at::Symbol op_name;
op_name = jit::Symbol::fromQualString("aten::sub");
node = tracer_state->graph->create(op_name, /*num_outputs=*/0);
jit::tracer::recordSourceLocation(node);
jit::tracer::addInputs(node, "self", self);
jit::tracer::addInputs(node, "other", other);
jit::tracer::addInputs(node, "alpha", alpha);
tracer_state->graph->insertNode(node);
jit::tracer::setTracingState(nullptr);
}
#ifndef NDEBUG
c10::optional<Storage> self__storage_saved =
self_.has_storage() ? c10::optional<Storage>(self_.storage()) : c10::nullopt;
c10::intrusive_ptr<TensorImpl> self__impl_saved;
if (self_.defined()) self__impl_saved = self_.getIntrusivePtr();
c10::optional<Storage> other__storage_saved =
other_.has_storage() ? c10::optional<Storage>(other_.storage()) : c10::nullopt;
c10::intrusive_ptr<TensorImpl> other__impl_saved;
if (other_.defined()) other__impl_saved = other_.getIntrusivePtr();
#endif
auto tmp = ([&]() {
at::AutoNonVariableTypeMode non_var_type_mode(true);
return at::sub(self_, other_, alpha);
})();
auto result = std::move(tmp);
#ifndef NDEBUG
if (self__storage_saved.has_value())
AT_ASSERT(self__storage_saved.value().is_alias_of(self_.storage()));
if (self__impl_saved) AT_ASSERT(self__impl_saved == self_.getIntrusivePtr());
if (other__storage_saved.has_value())
AT_ASSERT(other__storage_saved.value().is_alias_of(other_.storage()));
if (other__impl_saved) AT_ASSERT(other__impl_saved == other_.getIntrusivePtr());
#endif
if (grad_fn) {
set_history(flatten_tensor_args( result ), grad_fn);
}
if (tracer_state) {
jit::tracer::setTracingState(std::move(tracer_state));
jit::tracer::addOutput(node, result);
}
return result;
}
Tensor sum(const Tensor & self, c10::optional<ScalarType> dtype) {
RECORD_FUNCTION("sum", std::vector<c10::IValue>({self}), Node::peek_at_next_sequence_nr());
auto& self_ = unpack(self, "self", 0);
std::shared_ptr<SumBackward0> grad_fn;
if (compute_requires_grad( self )) {
grad_fn = std::shared_ptr<SumBackward0>(new SumBackward0(), deleteNode);
grad_fn->set_next_edges(collect_next_edges( self ));
grad_fn->self_sizes = self.sizes().vec();
}
torch::jit::Node* node = nullptr;
std::shared_ptr<jit::tracer::TracingState> tracer_state;
if (jit::tracer::isTracing()) {
tracer_state = jit::tracer::getTracingState();
at::Symbol op_name;
op_name = jit::Symbol::fromQualString("aten::sum");
node = tracer_state->graph->create(op_name, /*num_outputs=*/0);
jit::tracer::recordSourceLocation(node);
jit::tracer::addInputs(node, "self", self);
jit::tracer::addInputs(node, "dtype", dtype);
tracer_state->graph->insertNode(node);
jit::tracer::setTracingState(nullptr);
}
#ifndef NDEBUG
c10::optional<Storage> self__storage_saved =
self_.has_storage() ? c10::optional<Storage>(self_.storage()) : c10::nullopt;
c10::intrusive_ptr<TensorImpl> self__impl_saved;
if (self_.defined()) self__impl_saved = self_.getIntrusivePtr();
#endif
auto tmp = ([&]() {
at::AutoNonVariableTypeMode non_var_type_mode(true);
return at::sum(self_, dtype);
})();
auto result = std::move(tmp);
#ifndef NDEBUG
if (self__storage_saved.has_value())
AT_ASSERT(self__storage_saved.value().is_alias_of(self_.storage()));
if (self__impl_saved) AT_ASSERT(self__impl_saved == self_.getIntrusivePtr());
#endif
if (grad_fn) {
set_history(flatten_tensor_args( result ), grad_fn);
}
if (tracer_state) {
jit::tracer::setTracingState(std::move(tracer_state));
jit::tracer::addOutput(node, result);
}
return result;
}
Tensor pow(const Tensor & self, Scalar exponent) {
RECORD_FUNCTION("pow", std::vector<c10::IValue>({self, exponent}), Node::peek_at_next_sequence_nr());
auto& self_ = unpack(self, "self", 0);
std::shared_ptr<PowBackward0> grad_fn;
if (compute_requires_grad( self )) {
grad_fn = std::shared_ptr<PowBackward0>(new PowBackward0(), deleteNode);
grad_fn->set_next_edges(collect_next_edges( self ));
grad_fn->self_ = SavedVariable(self, false);
grad_fn->exponent = exponent;
}
torch::jit::Node* node = nullptr;
std::shared_ptr<jit::tracer::TracingState> tracer_state;
if (jit::tracer::isTracing()) {
tracer_state = jit::tracer::getTracingState();
at::Symbol op_name;
op_name = jit::Symbol::fromQualString("aten::pow");
node = tracer_state->graph->create(op_name, /*num_outputs=*/0);
jit::tracer::recordSourceLocation(node);
jit::tracer::addInputs(node, "self", self);
jit::tracer::addInputs(node, "exponent", exponent);
tracer_state->graph->insertNode(node);
jit::tracer::setTracingState(nullptr);
}
#ifndef NDEBUG
c10::optional<Storage> self__storage_saved =
self_.has_storage() ? c10::optional<Storage>(self_.storage()) : c10::nullopt;
c10::intrusive_ptr<TensorImpl> self__impl_saved;
if (self_.defined()) self__impl_saved = self_.getIntrusivePtr();
#endif
auto tmp = ([&]() {
at::AutoNonVariableTypeMode non_var_type_mode(true);
return at::pow(self_, exponent);
})();
auto result = std::move(tmp);
#ifndef NDEBUG
if (self__storage_saved.has_value())
AT_ASSERT(self__storage_saved.value().is_alias_of(self_.storage()));
if (self__impl_saved) AT_ASSERT(self__impl_saved == self_.getIntrusivePtr());
#endif
if (grad_fn) {
set_history(flatten_tensor_args( result ), grad_fn);
}
if (tracer_state) {
jit::tracer::setTracingState(std::move(tracer_state));
jit::tracer::addOutput(node, result);
}
return result;
}
}}
}}