Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix: segfault of matmul with transpose #37

Merged
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
213 changes: 187 additions & 26 deletions examples/matmul/run.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,8 @@

using namespace gpu;

const std::string versionToStr(int version);

static const char *kShaderMatmul1 = R"(
@group(0) @binding(0) var<storage, read_write> A: array<{{precision}}>;
@group(0) @binding(1) var<storage, read_write> B: array<{{precision}}>;
Expand Down Expand Up @@ -466,6 +468,123 @@ inline KernelCode createMatmulWithVectorization(const char *shaderTemplate, cons
}
}

/* 2D block-tiling with transpose
*
*/
static const char *kShaderMatmulWithTranspose = R"(
@group(0) @binding(0) var<storage, read_write> a: array<{{precision}}>;
@group(0) @binding(1) var<storage, read_write> b: array<{{precision}}>;
@group(0) @binding(2) var<storage, read_write> c: array<vec4<{{precision}}>>;
var<workgroup> tileA: array<{{precision}}, {{BM}} * {{BK}}>;
var<workgroup> tileB: array<{{precision}}, {{BK}} * {{BN}}>;

@compute @workgroup_size({{workgroupSize}})
fn main(
@builtin(global_invocation_id) globalID : vec3<u32>,
@builtin(local_invocation_id) localID : vec3<u32>,
@builtin(workgroup_id) groupid : vec3<u32>) {

var threadResults: array<vec4<{{precision}}>, {{TM}} * {{TN4}}>;
var localM: array<{{precision}}, {{TM}}>;
var localN: array<vec4<{{precision}}>, {{TN4}}>;

let cRow: u32 = groupid.x;
let cCol: u32 = groupid.y;
let numThread: u32 = ({{BM}} * {{BN}}) / ({{TM}} * {{TN}});

// position of the first c element computed by the thread
let threadRow: u32 = (localID.x / ({{BN}} / {{TN}})) * {{TM}};
let threadCol: u32 = (localID.x % ({{BN}} / {{TN}})) * {{TN}};

// aPtr and bPtr are the starting positions of the tiles in a and b,
// incremented in the bkidx loop.
// cPtr is the starting position of the tile in c which is fixed.

var aPtr: u32 = cRow * {{BM}} * {{K}};
var bPtr: u32 = cCol * {{BN}};
let cPtr: u32 = cRow * {{BM}} * {{N4}} + cCol * {{BN4}};

for (var bkidx = 0; bkidx < {{K}}; bkidx += {{BK}}) {

// Load tile
// Load BM x BK by numThread(BM * BN / (TM * TN))
// The number of iteration == BM * BK / (BM * BN / (TM * TN))
for (var idx: u32 = 0; idx < {{NUM_TILEA}}; idx++) {
tileA[localID.x + idx * numThread] = a[aPtr + ((localID.x + idx * numThread) / {{BK}}) * {{K}} + (localID.x + idx * numThread) % {{BK}}];
}
// Load BK x BN by numThread(BM * BN / (TM * TN))
// The number of iteration == BK * BN / (BM * BN / (TM * TN))
for (var idx: u32 = 0; idx < {{NUM_TILEB}}; idx++) {
tileB[localID.x + idx * numThread] = b[bPtr + ((localID.x + idx * numThread) / {{BN}}) * {{N}} + ((localID.x + idx * numThread) % {{BN}})];
}

aPtr += {{BK}};
bPtr += {{BK}} * {{N}};

workgroupBarrier();
// Compute tile
for (var dotIdx: u32 = 0; dotIdx < {{BK}}; dotIdx = dotIdx + 1) {
for (var idx: u32 = 0; idx < {{TM}}; idx++) {
localM[idx] = tileA[(threadRow + idx) * {{BK}} + dotIdx];
}
for (var idx: u32 = 0; idx < {{TN4}}; idx++) {
localN[idx] = vec4<{{precision}}>(tileB[(threadCol + idx*4 ) + dotIdx * {{BN}}],
tileB[(threadCol + idx*4 + 1) + dotIdx * {{BN}}],
tileB[(threadCol + idx*4 + 2) + dotIdx * {{BN}}],
tileB[(threadCol + idx*4 + 3) + dotIdx * {{BN}}]);
}
for (var resIdxM: u32 = 0; resIdxM < {{TM}}; resIdxM++) {
for (var resIdxN: u32 = 0; resIdxN < {{TN4}}; resIdxN++) {
threadResults[resIdxM * {{TN4}} + resIdxN] += localM[resIdxM] * localN[resIdxN];
}
}
}
workgroupBarrier();
}

for (var resIdxM: u32 = 0; resIdxM < {{TM}}; resIdxM++) {
for (var resIdxN: u32 = 0; resIdxN < {{TN4}}; resIdxN++) {
c[cPtr + (threadRow + resIdxM) * {{N4}} + (threadCol/4) + resIdxN] = threadResults[resIdxM * {{TN4}} + resIdxN];
}
}
}
)";

inline KernelCode createMatmulWithTranspose(const char *shaderTemplate, const size_t M,
const size_t K, const size_t N, const size_t BM,
const size_t BK, const size_t BN,
const size_t TM, const size_t TN,
const Shape &workgroupSize = {256, 1, 1},
NumType precision = kf32) {
assert(BM % TM == 0);
assert(BN % TN == 0);
assert(K % BK == 0);
assert(M % BM == 0);
assert(N % BN == 0);
// # threads = tile A size == tile B size == # threads for computing C
int num_threads = BM * BN / (TM * TN);
std::string codeString(shaderTemplate);
replaceAll(codeString, {{"{{workgroupSize}}", toString(workgroupSize)},
{"{{precision}}", toString(precision)},
{"{{M}}", toString(M)},
{"{{K}}", toString(K)},
{"{{N}}", toString(N)},
{"{{BM}}", toString(BM)},
{"{{BK}}", toString(BK)},
{"{{BN}}", toString(BN)},
{"{{TM}}", toString(TM)},
{"{{TN}}", toString(TN)},
{"{{NUM_TILEA}}", toString(BM * BK / num_threads)},
{"{{NUM_TILEB}}", toString(BN * BK / num_threads)},
{"{{TN4}}", toString(TN / 4)},
{"{{N4}}", toString(N / 4)},
{"{{BN4}}", toString(BN / 4)},
});
std::string unrolledCode = loopUnrolling(codeString);
// LOG(kDefLog, kInfo, "Unrolled code:\n%s", unrolledCode.c_str());
return {unrolledCode, workgroupSize};
}

/**
* @brief No-Op shader with matmul bindings for performance testing
*/
Expand Down Expand Up @@ -519,20 +638,26 @@ Kernel selectMatmul(Context &ctx, int version,
size_t M, size_t K, size_t N) {
Kernel kernel;
if (version == 1) {
Shape wgSize = {256, 1, 1};
Shape nWorkgroups = cdiv({M, N, 1}, {16, 16, 1});
KernelCode matmul = createNoOp(kShaderNoOp, /*wgsize*/ wgSize);
kernel = createKernel(ctx, matmul, bindings,
/*nWorkgroups*/ nWorkgroups);
} else if (version == 2) {
Shape wgSize = {16, 16, 1};
LOG(kDefLog, kInfo, "wgSize: %s", toString(wgSize).c_str());
KernelCode matmul =
createMatmul1(kShaderMatmul1, M, K, N, /*wgsize*/ wgSize);
kernel = createKernel(ctx, matmul, bindings,
/*nWorkgroups*/ cdiv({M, N, 1}, wgSize));
} else if (version == 2) {
} else if (version == 3) {
static constexpr size_t tileSize = 16;
KernelCode matmul = createMatmul2(kShaderMatmul2, M, K, N,
/*wgSize*/ {tileSize * tileSize, 1, 1});
kernel =
createKernel(ctx, matmul, bindings,
/* nWorkgroups*/ cdiv({M, N, 1}, {tileSize, tileSize, 1}));
} else if (version == 3 || version == 5) {
} else if (version == 4 || version == 6) {
static constexpr size_t BM = 64;
static constexpr size_t BK = 4;
static constexpr size_t BN = BM;
Expand All @@ -548,10 +673,10 @@ Kernel selectMatmul(Context &ctx, int version,
KernelCode matmul = createMatmul3(kShaderMatmul3, M, K, N, BM, BK, BN, TM,
/*wgSize*/ wgSize,
kf32,
/*Loop unrolling*/ version == 5 ? true: false);
/*Loop unrolling*/ version == 6 ? true: false);
kernel = createKernel(ctx, matmul, bindings,
/*nWorkgroups*/ nWorkgroups);
} else if (version == 4 || version == 6) {
} else if (version == 5 || version == 7) {
static constexpr size_t BM = 64;
static constexpr size_t BK = 8;
static constexpr size_t BN = 64;
Expand All @@ -566,10 +691,10 @@ Kernel selectMatmul(Context &ctx, int version,
KernelCode matmul = createMatmul4(kShaderMatmul4, M, K, N, BM, BK, BN, TM, TN,
/*wgSize*/ wgSize,
kf32,
/*Loop unrolling*/ version == 6 ? true: false);
/*Loop unrolling*/ version == 7 ? true: false);
kernel = createKernel(ctx, matmul, bindings,
/*nWorkgroups*/ nWorkgroups);
} else if (version == 7) {
} else if (version == 8) {
static constexpr size_t BM = 64;
static constexpr size_t BK = 8;
static constexpr size_t BN = 64;
Expand All @@ -587,10 +712,21 @@ Kernel selectMatmul(Context &ctx, int version,
/*Loop unrolling*/ true);
kernel = createKernel(ctx, matmul, bindings,
/*nWorkgroups*/ nWorkgroups);
} else if (version == 8) {
Shape wgSize = {256, 1, 1};
Shape nWorkgroups = cdiv({M, N, 1}, {16, 16, 1});
KernelCode matmul = createNoOp(kShaderNoOp, /*wgsize*/ wgSize);
} else if (version == 9) {
static constexpr size_t BM = 64;
static constexpr size_t BK = 8;
static constexpr size_t BN = 64;
static constexpr size_t TM = BM / BK;
static constexpr size_t TN = BN / BK;
Shape wgSize = {(BM / TM) * (BN / TN), 1, 1}; // This is the same as BK * BK.
Shape nWorkgroups = {cdiv(M, BM), cdiv(N, BN), 1};
LOG(kDefLog, kInfo, "M: %d, K: %d, N: %d", M, K, N);
LOG(kDefLog, kInfo, "BM: %d, BK: %d, BN: %d, TM: %d, TN: %d", BM, BK, BN, TM, TN);
LOG(kDefLog, kInfo, "wgSize: ( %s )", toString(wgSize).c_str());
LOG(kDefLog, kInfo, "nWorkgroups: ( %s )", toString(nWorkgroups).c_str());
KernelCode matmul = createMatmulWithTranspose(kShaderMatmulWithTranspose, M, K, N, BM, BK, BN, TM, TN,
/*wgSize*/ wgSize,
kf32);
kernel = createKernel(ctx, matmul, bindings,
/*nWorkgroups*/ nWorkgroups);
}
Expand Down Expand Up @@ -626,8 +762,8 @@ void runTest(int version, size_t M, size_t K, size_t N,

printf("[ Press enter to start tests ... ]\n");
getchar();
LOG(kDefLog, kInfo, "Dispatching Kernel version %d, %d iterations ...",
version, nIter);
LOG(kDefLog, kInfo, "Dispatching Kernel version %d: %s, %d iterations ...",
version, versionToStr(version).c_str(), nIter);

// Dispatch kernel nIter times
auto start = std::chrono::high_resolution_clock::now();
Expand Down Expand Up @@ -662,26 +798,43 @@ void runTest(int version, size_t M, size_t K, size_t N,
M, K, N, nIter, duration.count() / static_cast<double>(nIter) / 1000.0 /* us -> ms */, gflops);
}

const std::string versionToStr(int version){
switch (version) {
case 1: return "No-Op";
case 2: return "naive matmul";
case 3: return "tiling";
case 4: return "1D blocktiling";
case 5: return "2D blocktiling";
case 6: return "1D blocktiling with loop unrolling";
case 7: return "2D blocktiling with loop unrolling";
case 8: return "2D blocktiling with loop unrolling and vectorization";
case 9: return "2D blocktiling with loop unrolling, vectorization and transpose";
default: return "Not specified";
}
}

int main() {
char* version_str = getenv("MATMUL_VERSION");
int version = version_str == NULL ? 7 : atoi(version_str);
// 1 == naive matmul
// 2 == tiling
// 3 == 1D blocktiling
// 4 == 2D blocktiling
// 5 == 1D blocktiling with loop unrolling
// 6 == 2D blocktiling with loop unrolling
// 7 == 2D blocktiling with loop unrolling and vectorization
// 8 == No-Op
int version = version_str == NULL ? 9 : atoi(version_str);
// 1 == No-Op
// 2 == naive matmul
// 3 == tiling
// 4 == 1D blocktiling
// 5 == 2D blocktiling
// 6 == 1D blocktiling with loop unrolling
// 7 == 2D blocktiling with loop unrolling
// 8 == 2D blocktiling with loop unrolling and vectorization
// 9 == 2D blocktiling with loop unrolling, vectorization and transpose (default)

size_t M, K, N; // Matrix dimensions
static constexpr int kTestSize = 2;
if constexpr (kTestSize == 0) {
char* kTestSize_str = getenv("MATMUL_SIZE");
int kTestSize = kTestSize_str == NULL ? 2 : atoi(kTestSize_str);
if (kTestSize == 0) {
// Tiny test
M = 32;
K = 32;
N = 32;
} else if constexpr (kTestSize == 1) {
} else if (kTestSize == 1) {
// Small test
M = 256;
K = 128;
Expand All @@ -696,11 +849,19 @@ int main() {
std::unique_ptr<float[]> inputPtr = std::make_unique<float[]>(M * K);
std::unique_ptr<float[]> weightsPtr = std::make_unique<float[]>(N * K);
std::unique_ptr<float[]> outputPtr = std::make_unique<float[]>(M * N);
bool transposedInput = version == 9;

initData(M, K, N, inputPtr, weightsPtr);
runTest(version, M, K, N, inputPtr, weightsPtr, outputPtr);
if (transposedInput) {
std::unique_ptr<float[]> transposedWeightPtr = std::make_unique<float[]>(K * N);
transpose(weightsPtr.get(), transposedWeightPtr.get(), N, K);
runTest(version, M, K, N, inputPtr, transposedWeightPtr, outputPtr);
} else {
runTest(version, M, K, N, inputPtr, weightsPtr, outputPtr);
}


if constexpr (kTestSize <= 1) {
if (kTestSize <= 1) {
// Check result with CPU reference implementation for tiny/small tests
checkCPU(M, K, N, inputPtr, weightsPtr, outputPtr);
}
Expand Down
Loading