Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add the ops of AoT #70

Merged
merged 7 commits into from
Nov 18, 2024
Merged
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
113 changes: 67 additions & 46 deletions experimental/kernels/gpt2_webgpu_aot.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,6 @@ typedef struct {

// the parameters of the model
#define NUM_PARAMETER_TENSORS 16
#define NUM_PARAMETER_LAYERS 12
Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Following review, NUM_PARAMETER_LAYERS has been replaced with num_layers.

typedef struct {
Tensor wte; // (V, C)
Tensor wpe; // (maxT, C)
Expand Down Expand Up @@ -91,22 +90,36 @@ void fill_in_parameter_sizes(size_t* param_sizes, GPT2Config config) {
}

// allocate memory for the parameters and point the individual tensors to the right places
void malloc_and_point_parameters(Context& ctx, ParameterTensors* params, size_t* param_sizes) {
void malloc_and_point_parameters(Context& ctx, GPT2Config config, ParameterTensors* params, size_t* param_sizes) {
size_t L = config.num_layers;
params->wte = createTensor(ctx, Shape{param_sizes[0]}, kf32);
params->wpe = createTensor(ctx, Shape{param_sizes[1]}, kf32);
for(int l = 0; l < NUM_PARAMETER_LAYERS; l++) {
params->ln1w.push_back(createTensor(ctx, Shape{param_sizes[2]/NUM_PARAMETER_LAYERS}, kf32));
params->ln1b.push_back(createTensor(ctx, Shape{param_sizes[3]/NUM_PARAMETER_LAYERS}, kf32));
params->qkvw.push_back(createTensor(ctx, Shape{param_sizes[4]/NUM_PARAMETER_LAYERS}, kf32));
params->qkvb.push_back(createTensor(ctx, Shape{param_sizes[5]/NUM_PARAMETER_LAYERS}, kf32));
params->attprojw.push_back(createTensor(ctx, Shape{param_sizes[6]/NUM_PARAMETER_LAYERS}, kf32));
params->attprojb.push_back(createTensor(ctx, Shape{param_sizes[7]/NUM_PARAMETER_LAYERS}, kf32));
params->ln2w.push_back(createTensor(ctx, Shape{param_sizes[8]/NUM_PARAMETER_LAYERS}, kf32));
params->ln2b.push_back(createTensor(ctx, Shape{param_sizes[9]/NUM_PARAMETER_LAYERS}, kf32));
params->fcw.push_back(createTensor(ctx, Shape{param_sizes[10]/NUM_PARAMETER_LAYERS}, kf32));
params->fcb.push_back(createTensor(ctx, Shape{param_sizes[11]/NUM_PARAMETER_LAYERS}, kf32));
params->fcprojw.push_back(createTensor(ctx, Shape{param_sizes[12]/NUM_PARAMETER_LAYERS}, kf32));
params->fcprojb.push_back(createTensor(ctx, Shape{param_sizes[13]/NUM_PARAMETER_LAYERS}, kf32));

params->ln1w.resize(L);
params->ln1b.resize(L);
params->qkvw.resize(L);
params->qkvb.resize(L);
params->attprojw.resize(L);
params->attprojb.resize(L);
params->ln2w.resize(L);
params->ln2b.resize(L);
params->fcw.resize(L);
params->fcb.resize(L);
params->fcprojw.resize(L);
params->fcprojb.resize(L);
for(int l = 0; l < L ; l++) {
params->ln1w[l] = createTensor(ctx, Shape{param_sizes[2]/config.num_layers}, kf32);
params->ln1b[l] = createTensor(ctx, Shape{param_sizes[3]/config.num_layers}, kf32);
params->qkvw[l] = createTensor(ctx, Shape{param_sizes[4]/config.num_layers}, kf32);
params->qkvb[l] = createTensor(ctx, Shape{param_sizes[5]/config.num_layers}, kf32);
params->attprojw[l] = createTensor(ctx, Shape{param_sizes[6]/config.num_layers}, kf32);
params->attprojb[l] = createTensor(ctx, Shape{param_sizes[7]/config.num_layers}, kf32);
params->ln2w[l] = createTensor(ctx, Shape{param_sizes[8]/config.num_layers}, kf32);
params->ln2b[l] = createTensor(ctx, Shape{param_sizes[9]/config.num_layers}, kf32);
params->fcw[l] = createTensor(ctx, Shape{param_sizes[10]/config.num_layers}, kf32);
params->fcb[l] = createTensor(ctx, Shape{param_sizes[11]/config.num_layers}, kf32);
params->fcprojw[l] = createTensor(ctx, Shape{param_sizes[12]/config.num_layers}, kf32);
params->fcprojb[l] = createTensor(ctx, Shape{param_sizes[13]/config.num_layers}, kf32);
}
params->lnfw = createTensor(ctx, Shape{param_sizes[14]}, kf32);
params->lnfb = createTensor(ctx, Shape{param_sizes[15]}, kf32);
Expand Down Expand Up @@ -201,25 +214,42 @@ void fill_in_activation_sizes(size_t* act_sizes, GPT2Config config, int B, int T
act_sizes[22] = B * T; // losses
}

void malloc_and_point_activations(Context& ctx, ActivationTensors* acts, size_t* act_sizes) {
void malloc_and_point_activations(Context& ctx, GPT2Config config, ActivationTensors* acts, size_t* act_sizes) {
size_t L = config.num_layers;
acts->encoded = createTensor(ctx, Shape{act_sizes[0]}, kf32);
for (int l = 0; l < NUM_PARAMETER_LAYERS; l++) {
acts->ln1.push_back(createTensor(ctx, Shape{act_sizes[1]/NUM_PARAMETER_LAYERS}, kf32));
acts->ln1_mean.push_back(createTensor(ctx, Shape{act_sizes[2]/NUM_PARAMETER_LAYERS}, kf32));
acts->ln1_rstd.push_back(createTensor(ctx, Shape{act_sizes[3]/NUM_PARAMETER_LAYERS}, kf32));
acts->qkv.push_back(createTensor(ctx, Shape{act_sizes[4]/NUM_PARAMETER_LAYERS}, kf32));
acts->atty.push_back(createTensor(ctx, Shape{act_sizes[5]/NUM_PARAMETER_LAYERS}, kf32));
acts->preatt.push_back(createTensor(ctx, Shape{act_sizes[6]/NUM_PARAMETER_LAYERS}, kf32));
acts->att.push_back(createTensor(ctx, Shape{act_sizes[7]/NUM_PARAMETER_LAYERS}, kf32));
acts->attproj.push_back(createTensor(ctx, Shape{act_sizes[8]/NUM_PARAMETER_LAYERS}, kf32));
acts->residual2.push_back(createTensor(ctx, Shape{act_sizes[9]/NUM_PARAMETER_LAYERS}, kf32));
acts->ln2.push_back(createTensor(ctx, Shape{act_sizes[10]/NUM_PARAMETER_LAYERS}, kf32));
acts->ln2_mean.push_back(createTensor(ctx, Shape{act_sizes[11]/NUM_PARAMETER_LAYERS}, kf32));
acts->ln2_rstd.push_back(createTensor(ctx, Shape{act_sizes[12]/NUM_PARAMETER_LAYERS}, kf32));
acts->fch.push_back(createTensor(ctx, Shape{act_sizes[13]/NUM_PARAMETER_LAYERS}, kf32));
acts->fch_gelu.push_back(createTensor(ctx, Shape{act_sizes[14]/NUM_PARAMETER_LAYERS}, kf32));
acts->fcproj.push_back(createTensor(ctx, Shape{act_sizes[15]/NUM_PARAMETER_LAYERS}, kf32));
acts->residual3.push_back(createTensor(ctx, Shape{act_sizes[16]/NUM_PARAMETER_LAYERS}, kf32));
acts->ln1.resize(L);
acts->ln1_mean.resize(L);
acts->ln1_rstd.resize(L);
acts->qkv.resize(L);
acts->atty.resize(L);
acts->preatt.resize(L);
acts->att.resize(L);
acts->attproj.resize(L);
acts->residual2.resize(L);
acts->ln2.resize(L);
acts->ln2_mean.resize(L);
acts->ln2_rstd.resize(L);
acts->fch.resize(L);
acts->fch_gelu.resize(L);
acts->fcproj.resize(L);
acts->residual3.resize(L);
for (int l = 0; l < L; l++) {
acts->ln1[l] = createTensor(ctx, Shape{act_sizes[1]/config.num_layers}, kf32);
acts->ln1_mean[l] = createTensor(ctx, Shape{act_sizes[2]/config.num_layers}, kf32);
acts->ln1_rstd[l] = createTensor(ctx, Shape{act_sizes[3]/config.num_layers}, kf32);
acts->qkv[l] = createTensor(ctx, Shape{act_sizes[4]/config.num_layers}, kf32);
acts->atty[l] = createTensor(ctx, Shape{act_sizes[5]/config.num_layers}, kf32);
acts->preatt[l] = createTensor(ctx, Shape{act_sizes[6]/config.num_layers}, kf32);
acts->att[l] = createTensor(ctx, Shape{act_sizes[7]/config.num_layers}, kf32);
acts->attproj[l] = createTensor(ctx, Shape{act_sizes[8]/config.num_layers}, kf32);
acts->residual2[l] = createTensor(ctx, Shape{act_sizes[9]/config.num_layers}, kf32);
acts->ln2[l] = createTensor(ctx, Shape{act_sizes[10]/config.num_layers}, kf32);
acts->ln2_mean[l] = createTensor(ctx, Shape{act_sizes[11]/config.num_layers}, kf32);
acts->ln2_rstd[l] = createTensor(ctx, Shape{act_sizes[12]/config.num_layers}, kf32);
acts->fch[l] = createTensor(ctx, Shape{act_sizes[13]/config.num_layers}, kf32);
acts->fch_gelu[l] = createTensor(ctx, Shape{act_sizes[14]/config.num_layers}, kf32);
acts->fcproj[l] = createTensor(ctx, Shape{act_sizes[15]/config.num_layers}, kf32);
acts->residual3[l] = createTensor(ctx, Shape{act_sizes[16]/config.num_layers}, kf32);
}
acts->lnf = createTensor(ctx, Shape{act_sizes[17]}, kf32);
acts->lnf_mean = createTensor(ctx, Shape{act_sizes[18]}, kf32);
Expand All @@ -229,15 +259,6 @@ void malloc_and_point_activations(Context& ctx, ActivationTensors* acts, size_t*
acts->losses = createTensor(ctx, Shape{act_sizes[22]}, kf32);
}

struct GPUParameters {
Tensor data[NUM_PARAMETER_TENSORS];
};

struct GPUActivations {
Tensor data[NUM_ACTIVATION_TENSORS];
};


void gpu_alloc(Context& ctx, Tensor* tensors, size_t* sizes, size_t n) {
for (size_t i = 0; i < n; i++) {
tensors[i] = createTensor(ctx, Shape{sizes[i]}, kf32);
Expand Down Expand Up @@ -325,7 +346,7 @@ void gpt2_build_from_checkpoint(Context& ctx, GPT2 *model, const char* checkpoin
model->num_parameters = num_parameters;

// read in all the parameters from file
malloc_and_point_parameters(ctx, &model->params, model->param_sizes);
malloc_and_point_parameters(ctx, model->config, &model->params, model->param_sizes);
model->params_memory = (float*)mallocCheck(num_parameters * sizeof(float));
freadCheck(model->params_memory, sizeof(float), num_parameters, model_file);
fcloseCheck(model_file);
Expand Down Expand Up @@ -428,7 +449,7 @@ void gpt2_forward(Context& ctx, GPT2 *model, Tensor& inputs, Tensor& targets, si
printf("num_activations: %zu\n", num_activations);
model->num_activations = num_activations;
printf("Allocating %.2f MB for activations\n", num_activations * sizeof(float) / (1024.0f * 1024.0f));
malloc_and_point_activations(ctx, &model->acts, model->act_sizes);
malloc_and_point_activations(ctx, model->config, &model->acts, model->act_sizes);
// also create memory for caching inputs and targets
//model->inputs = (int*)mallocCheck(B * T * sizeof(int));
//model->targets = (int*)mallocCheck(B * T * sizeof(int)); // might be unused if we never have targets but it's small
Expand Down Expand Up @@ -664,8 +685,8 @@ void gpt2_backward(Context& ctx, GPT2 *model) {
// lazily allocate the memory for gradients of the weights and activations, if needed
if (model->grads_memory == NULL) {
printf("Allocating %.2f MB for gradients\n", model->num_parameters * sizeof(float) / (1024.0f * 1024.0f));
malloc_and_point_parameters(ctx, &model->grads, model->param_sizes);
malloc_and_point_activations(ctx, &model->grads_acts, model->act_sizes);
malloc_and_point_parameters(ctx, model->config, &model->grads, model->param_sizes);
malloc_and_point_activations(ctx, model->config, &model->grads_acts, model->act_sizes);
gpt2_zero_grad(model);
}

Expand Down