Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Feat: fastembed support #52

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -77,6 +77,7 @@ rankllm = [
"nmslib-metabrainz; python_version >= '3.10'",
"rank-llm; python_version >= '3.10'"
]
fastembed = ["fastembed"]
dev = ["ruff", "isort", "pytest", "ipyprogress", "ipython", "ranx", "ir_datasets", "srsly"]

[project.urls]
Expand Down
7 changes: 7 additions & 0 deletions rerankers/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -58,3 +58,10 @@
AVAILABLE_RANKERS["MonoVLMRanker"] = MonoVLMRanker
except ImportError:
pass

try:
from rerankers.models.fastembed_ranker import FastEmbedRanker

AVAILABLE_RANKERS["FastEmbedRanker"] = FastEmbedRanker
except ImportError:
pass
28 changes: 28 additions & 0 deletions rerankers/models/fastembed_ranker.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
from rerankers.results import RankedResults
from rerankers.models.ranker import BaseRanker
from rerankers.results import RankedResults, Result
from fastembed.rerank.cross_encoder import TextCrossEncoder
from rerankers.utils import prep_docs


class FastEmbedRanker(BaseRanker):

def __init__(self, model_name_or_path, verbose=None):

self.model = TextCrossEncoder(model_name=model_name_or_path)

def rank(self, query, docs):
docs = prep_docs(docs)
scores = list(self.model.rerank(query, [d.text for d in docs]))
indices = sorted(range(len(scores)), key=lambda k: scores[k], reverse=True)

ranked_results = [
Result(document=docs[idx], score=scores[idx], rank=i + 1)
for i, idx in enumerate(indices)
]

return RankedResults(results=ranked_results, query=query, has_scores=True)

def score(self, query, doc):
score = list(self.model.rerank(query, [doc]))[0]
return score
17 changes: 12 additions & 5 deletions rerankers/reranker.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,8 +38,12 @@
},
"monovlm": {
"en": "lightonai/MonoQwen2-VL-v0.1",
"other": "lightonai/MonoQwen2-VL-v0.1"
}
"other": "lightonai/MonoQwen2-VL-v0.1",
},
"fastembed": {
"en": "Xenova/ms-marco-MiniLM-L-6-v2",
"other": "Xenova/ms-marco-MiniLM-L-6-v2",
},
}

DEPS_MAPPING = {
Expand All @@ -52,7 +56,8 @@
"FlashRankRanker": "flashrank",
"RankLLMRanker": "rankllm",
"LLMLayerWiseRanker": "transformers",
"MonoVLMRanker": "transformers"
"MonoVLMRanker": "transformers",
"FastEmbedRanker": "fastembed",
}

PROVIDERS = ["cohere", "jina", "voyage", "mixedbread.ai", "pinecone", "text-embeddings-inference"]
Expand Down Expand Up @@ -91,7 +96,8 @@ def _get_model_type(model_name: str, explicit_model_type: Optional[str] = None)
"flashrank": "FlashRankRanker",
"rankllm": "RankLLMRanker",
"llm-layerwise": "LLMLayerWiseRanker",
"monovlm": "MonoVLMRanker"
"monovlm": "MonoVLMRanker",
"fastembed": "FastEmbedRanker",
}
return model_mapping.get(explicit_model_type, explicit_model_type)
else:
Expand All @@ -115,7 +121,8 @@ def _get_model_type(model_name: str, explicit_model_type: Optional[str] = None)
"zephyr": "RankLLMRanker",
"bge-reranker-v2.5-gemma2-lightweight": "LLMLayerWiseRanker",
"monovlm": "MonoVLMRanker",
"monoqwen2-vl": "MonoVLMRanker"
"monoqwen2-vl": "MonoVLMRanker",
"Xenova/ms-marco-MiniLM-L-6-v2": "FastEmbedRanker",
}
for key, value in model_mapping.items():
if key in model_name:
Expand Down