The repository provides the code and data used in our experiments.
python==3.7.13
torch==1.5.0
dgl==0.4.2
scikit-learn
tqdm
lmdb
data: The inductive datasets split by GraIL
types: The raw types of entities we obtained and the types of entities after preprocessing.
expri_save_models: The trained models to generate experimental results in the paper.
We provide the commands to train and test our model, and the illustration of their parameters. Take nell_v1 for example.
-
training
python train.py -d nell_v1 -e nell_v1 -ne 20 --ont-d: the name of training dataset-e: the directory of saved models-ne: the number of epoches--ont: type-enhanced model
-
test on
AUC-PRpython test_auc.py -d nell_v1_ind -e nell_v1 --ont --runs 5-d: the name of test dataset-e: the directory of saved models--ont: type-enhanced model--runs: run times
-
test on
Hits@10python test_ranking.py -d nell_v1_ind -e nell_v1 --ont-d: the name of test dataset-e: the directory of saved models--ont: type-enhanced model