A relation-free graph construction method for efficient GraphRAG. It eliminates LLM token costs during graph construction, making GraphRAG faster and more efficient than ever.
- ✅ Context-Preserving: Relation-free graph construction, relying on lightweight entity recognition and semantic linking to achieve comprehensive contextual comprehension.
- ✅ Complex Reasoning: Enables deep retrieval via semantic bridging, achieving multi-hop reasoning in a single retrieval pass without requiring explicit relational graphs.
- ✅ High Scalability: Zero LLM token consumption, faster processing speed, and linear time/space complexity.
- [2025-10-27] We release LinearRAG, a relation-free graph construction method for efficient GraphRAG.
- [2025-06-06] We release GraphRAG-Bench, the benchmark for evaluating GraphRAG models.
- [2025-01-21] We release the GraphRAG survey.
Step 1: Install Python packages
pip install -r requirements.txtStep 2: Download Spacy language model
python -m spacy download en_core_web_trfNote: For the
medicaldataset, you need to install the scientific/biomedical Spacy model:
pip install https://s3-us-west-2.amazonaws.com/ai2-s2-scispacy/releases/v0.5.3/en_core_sci_scibert-0.5.3.tar.gzStep 3: Set up your OpenAI API key
export OPENAI_API_KEY="your-api-key-here"
export OPENAI_BASE_URL="your-base-url-here"Step 4: Download Datasets
Download the datasets from HuggingFace and place them in the dataset/ folder:
git clone https://huggingface.co/datasets/Zly0523/linear-rag
cp -r linear-rag/dataset/* dataset/Step 5: Prepare Embedding Model
Make sure the embedding model is available at:
model/all-mpnet-base-v2/
SPACY_MODEL="en_core_web_trf"
EMBEDDING_MODEL="model/bge-large-en-v1.5"
DATASET_NAME="2wikimultihop"
LLM_MODEL="gpt-4o-mini"
MAX_WORKERS=16
python run.py \
--spacy_model ${SPACY_MODEL} \
--embedding_model ${EMBEDDING_MODEL} \
--dataset_name ${DATASET_NAME} \
--llm_model ${LLM_MODEL} \
--max_workers ${MAX_WORKERS}If you find this work helpful, please consider citing us:
@article{zhuang2025linearrag,
title={LinearRAG: Linear Graph Retrieval Augmented Generation on Large-scale Corpora},
author={Zhuang, Luyao and Chen, Shengyuan and Xiao, Yilin and Zhou, Huachi and Zhang, Yujing and Chen, Hao and Zhang, Qinggang and Huang, Xiao},
journal={arXiv preprint arXiv:2510.10114},
year={2025}
}✉️ Email: [email protected]


