| Amar Parab | Simeen Pathan | Dhanashri Petkar | Sania Alam |
|---|---|---|---|
| Class - TY A | Class - TY A | Class - TY A | Class - TY A |
| Roll No. - 39 | Roll No. - 35 | Roll No. - 02 | Roll No. - 17 |
##PROJECT TITTLE ###movielens_recommendations_transformers
##USE OF REAL DATASET
###Project Structure
- Uploading and Reading the Dataset: Upload the dialogue transcript and read it into a pandas DataFrame.
- Preprocessing the Data: Clean and preprocess the data for training, including encoding emotions and normalizing VAD (Valence, Arousal, Dominance) scores.
- Tokenization: Tokenize the input text using BERT tokenizer.
- Custom Dataset Class: Create a custom dataset class to handle input encodings and labels.
- Model Training: Train a BERT model for sequence classification using the prepared dataset.
- Model Evaluation: Evaluate the trained model on the dataset.