Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
45 commits
Select commit Hold shift + click to select a range
423cd09
parte convolucional pronta
Felipe-Tommaselli Oct 6, 2022
246bf11
trabalho finalizado
Felipe-Tommaselli Oct 7, 2022
bafeb7b
anotações aula 6 em andamento
Oct 7, 2022
69e7056
Merge branch 'main' of https://github.com/Felipe-Tommaselli/RedesNeur…
Oct 7, 2022
26c79e9
aula finalizada
Oct 8, 2022
89a2324
inicio do bloco e aula sobre autoenconders
Felipe-Tommaselli Oct 24, 2022
05ab5a9
minor changes
Felipe-Tommaselli Oct 24, 2022
9b8dda3
aulinha hmmm
Felipe-Tommaselli Oct 25, 2022
f050d69
aula teórica 7 finbalizada
Felipe-Tommaselli Oct 25, 2022
d82f097
aula 7 finalizada
Felipe-Tommaselli Oct 26, 2022
06af86e
gitignore
Felipe-Tommaselli Oct 26, 2022
dde79d5
arrumando o repo
Felipe-Tommaselli Oct 29, 2022
ff940e4
primeira parte da aula 8
Felipe-Tommaselli Oct 29, 2022
39e20e4
fim da aula 8 sobre redes geradoras
Felipe-Tommaselli Oct 30, 2022
ea808a4
inicio trabalho 2
Felipe-Tommaselli Oct 30, 2022
032f01b
primeira parte da aula 9
Felipe-Tommaselli Oct 30, 2022
f352db1
minor changes
Felipe-Tommaselli Oct 30, 2022
bde0693
fim aula 8- Redes Recorrentes
Felipe-Tommaselli Oct 30, 2022
c7da6b9
começando o trab 2
Felipe-Tommaselli Nov 3, 2022
1c6068d
commit basico (apenas ajuste da classe base)
Felipe-Tommaselli Nov 3, 2022
fe19ca4
trabalhando!
Felipe-Tommaselli Nov 4, 2022
7dac8ed
otimizando a rede (melhorou mas não ta igual a referencia ainda)
Felipe-Tommaselli Nov 4, 2022
175ac44
trabalhando
Felipe-Tommaselli Nov 4, 2022
1fbd9d4
rede tá bacaninha emm
Felipe-Tommaselli Nov 4, 2022
f1151c3
adicionando explicações das alterações que fizemos
Felipe-Tommaselli Nov 4, 2022
33ca800
mexi em nada não
Felipe-Tommaselli Nov 5, 2022
0dfb0c2
Meu commit :)
DiegoFleury Nov 7, 2022
e0b50b7
tentando melhorar a rede e pegar o output do erro sem normalização
Felipe-Tommaselli Nov 7, 2022
b13fa9e
minor changes
Felipe-Tommaselli Nov 12, 2022
a087ab9
rede tá filé, RMSE = 2.03
Felipe-Tommaselli Nov 12, 2022
20aa261
Finalizados comentários de bidirectional.
DiegoFleury Nov 12, 2022
f78d126
vamo enviaaa
Felipe-Tommaselli Nov 12, 2022
b73ad4d
mudança de nome do arq
Felipe-Tommaselli Nov 12, 2022
d50d096
errinho arrumado
Felipe-Tommaselli Nov 12, 2022
264fe64
agora ta perfeito pra enviar
Felipe-Tommaselli Nov 12, 2022
8fd958e
zip
Felipe-Tommaselli Nov 12, 2022
d4b3b39
zip
Felipe-Tommaselli Nov 12, 2022
a5eccae
copiando os sldies da aula 10
Felipe-Tommaselli Nov 16, 2022
066c1d8
Transformer Network
Felipe-Tommaselli Nov 24, 2022
7017b06
aula 11- transformer networks finalizada
Felipe-Tommaselli Nov 24, 2022
ffcf13d
minor changes
Felipe-Tommaselli Nov 24, 2022
3f8db21
problema no envio do zip, reenvio feito
Felipe-Tommaselli Nov 26, 2022
326a3b3
começo do trabalho 3 e tentando colocar o cuda pra funcionar com o py…
Felipe-Tommaselli Nov 27, 2022
b915176
minor changes
Felipe-Tommaselli Jan 8, 2023
8484f46
Update README.md
Felipe-Tommaselli Dec 20, 2023
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 16 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,16 @@
bloco7_autoenconders/data/MNIST/raw/t10k-images-idx3-ubyte
bloco7_autoenconders/data/MNIST/raw/t10k-images-idx3-ubyte.gz
bloco7_autoenconders/data/MNIST/raw/t10k-labels-idx1-ubyte
bloco7_autoenconders/data/MNIST/raw/t10k-labels-idx1-ubyte.gz
bloco7_autoenconders/data/MNIST/raw/train-images-idx3-ubyte
bloco7_autoenconders/data/MNIST/raw/train-images-idx3-ubyte.gz
bloco7_autoenconders/data/MNIST/raw/train-labels-idx1-ubyte
bloco7_autoenconders/data/MNIST/raw/train-labels-idx1-ubyte.gz
bloco6_autoenconders/data/MNIST/raw/t10k-images-idx3-ubyte
bloco6_autoenconders/data/MNIST/raw/t10k-images-idx3-ubyte.gz
bloco6_autoenconders/data/MNIST/raw/t10k-labels-idx1-ubyte
bloco6_autoenconders/data/MNIST/raw/t10k-labels-idx1-ubyte.gz
bloco6_autoenconders/data/MNIST/raw/train-images-idx3-ubyte
bloco6_autoenconders/data/MNIST/raw/train-images-idx3-ubyte.gz
bloco6_autoenconders/data/MNIST/raw/train-labels-idx1-ubyte
bloco6_autoenconders/data/MNIST/raw/train-labels-idx1-ubyte.gz
28 changes: 26 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,2 +1,26 @@
# RedesNeurais
Disciplina de Redes Neurais SCC0270
# Redes Neurais e Aprendizado Profundo / Neural Networks and Deep Learning (2022)

Compilado de programas, anotações e atividades da disciplina de SCC0270 - Redes Neurais e Aprendizado Profundo oferecida pelo ICMC-USP. Todos os programas desenvolvidos na disciplina foram feitos em linguagem Python com o framework Pytorch e possuem apenas fins educacionais.

Compiled from programs, notes and activities from the subject SCC0270 - Neural Networks and Deep Learning offered by ICMC-USP. All programs developed in the course were written in Python with the Pytorch framework and are for educational purposes only.

## A disciplina/ The discipline

### Objetivos / Goals

Apresentar ao aluno os conceitos básicos de Redes Neurais Artificiais e os principais modelos existentes. Analisar o comportamento destes modelos, suas capacidades fundamentais e limitações, possibilitando a utilização destas técnicas na resolução de problemas práticos.

To present to the students the basic concepts of Artificial Neural Networks and the current most important models. To analyze the behavior of these models, their fundamental capabilities and limitations, allowing the use of these techniques to solve practical problems.

### Programa resumido / Summary program

Definição de modelos conexionistas.
Aprendizado em modelos conexionistas: aprendizado supervisionado, não-supervisionado, competitivo.
Arquiteturas básicas: Perceptron, Adaline, Perceptron Multi-Camadas, Redes RBF.
Aprendizado profundo: arquiteturas convolucionais (CNN), encoder-decoder, redes adversárias, transfer learning, redes recorrentes e modelos de atenção.
Sistemas de auto-organização: PCA, LDA e rede de Kohonen. Memórias Associativas: Redes de Hopfield. Aplicações.

Definition of connectionist models.
Learning in connectionist models: supervised, unsupervised, and competitive learning.
Basic architectures: Perceptron, Adaline, Multi-Layer Perceptron, RBF Networks. Deep learning: convolutional architectures (CNN),encoder-decoder, adversarial networks, transfer learning, recurrent networks and attention models.
Self-organization systems: PCA, LDA and Kohonen network. Associative Memories: Hopfield Networks. Applications.
Loading