This repository was archived by the owner on Nov 12, 2025. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 26
Finfish real world franka example code #11
Merged
Merged
Changes from all commits
Commits
Show all changes
4 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,3 @@ | ||
| [submodule "experiments/7_franka/deoxys_control"] | ||
| path = experiments/7_franka/deoxys_control | ||
| url = https://github.com/UT-Austin-RPL/deoxys_control.git |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,96 @@ | ||
| # Franka Emika Panda Robot Control with EO-1 | ||
|
|
||
| This directory contains the implementation for controlling Franka Emika Panda robots using the EO-1 model. The system enables real-time robot manipulation tasks through vision-language-action integration. | ||
|
|
||
| ## 🚀 Quick Start | ||
|
|
||
| ### Prerequisites | ||
|
|
||
| **Hardware Requirements:** | ||
|
|
||
| - Franka Emika Panda robot arm | ||
| - RealSense cameras (or compatible RGB cameras) | ||
| - **NUC**: Configured with real-time kernel for robot control | ||
| - **Workstation**: Equipped with GPU for model inference | ||
|
|
||
| **Software Requirements:** | ||
|
|
||
| - Ubuntu 20.04+ with CUDA support | ||
| - Python 3.10+ | ||
| - Real-time kernel configuration on NUC | ||
| - Deoxys control system properly configured | ||
|
|
||
| ### Installation | ||
|
|
||
| 1. **Setup submodules:** | ||
|
|
||
| ```bash | ||
| git submodule update --init --recursive experiments/7_franka/deoxys_control | ||
| ``` | ||
|
|
||
| 2. **Configure robot control system:** | ||
| Follow the [Deoxys Documentation](https://zhuyifengzju.github.io/deoxys_docs/html/index.html) to configure your NUC and workstation for Franka control. | ||
|
|
||
| 3. **Install dependencies on workstation** | ||
|
|
||
| ```bash | ||
| # Create conda environment | ||
| conda create -n eo python=3.10 | ||
| conda activate eo | ||
|
|
||
| # Install deoxys for workstation | ||
| pip install -e experiments/7_franka/deoxys_control/deoxys | ||
|
|
||
| # Install additional requirements | ||
| pip install -r experiments/7_franka/requirements.txt | ||
| ``` | ||
|
|
||
| **Note**: The NUC handles real-time robot control while the workstation runs the EO-1 model inference. Both systems must be properly configured according to the Deoxys documentation. | ||
|
|
||
| ## 🤖 Running Robot Control | ||
|
|
||
| ### Basic Usage | ||
|
|
||
| ```bash | ||
| python experiments/7_franka/eval_franka.py \ | ||
| --model-path "path/to/your/model" \ | ||
| --repo-id libero_spatial_no_noops_1.0.0_lerobot \ | ||
| --task "Pick and place a cube" \ | ||
| --video-out-path experiments/7_franka/videos \ | ||
| --max-timesteps 300 | ||
| ``` | ||
|
|
||
| ### Parameters | ||
|
|
||
| | Parameter | Description | Default | | ||
| | ------------------ | -------------------------------------------- | --------------------------------------- | | ||
| | `--model-path` | Path to the trained EO-1 model checkpoint | Required | | ||
| | `--repo-id` | Dataset repository ID for task specification | `libero_spatial_no_noops_1.0.0_lerobot` | | ||
| | `--task` | Natural language description of the task | `"Pick and place a cube"` | | ||
| | `--video-out-path` | Directory to save recorded videos | `experiments/7_franka/videos` | | ||
| | `--max-timesteps` | Maximum number of control steps | `300` | | ||
| | `--resize-size` | Image resize dimensions for model input | `224` | | ||
| | `--replan-steps` | RHC control horizon | `5` | | ||
|
|
||
| ### Camera Configuration | ||
|
|
||
| The system supports multiple camera inputs. Update the camera serial numbers in `eval_franka.py`: | ||
|
|
||
| ```python | ||
| # Camera serial numbers (update these with your actual camera IDs) | ||
| EGO_CAMERA = "213522070137" # Wrist camera | ||
| THIRD_CAMERA = "243222074139" # External camera | ||
| ``` | ||
|
|
||
| ## 🔒 Safety Considerations | ||
|
|
||
| - Always ensure proper workspace setup before operation | ||
| - Monitor robot movements and be ready to use emergency stop | ||
| - Verify camera positioning for optimal visual coverage | ||
|
|
||
| ## 📝 Notes | ||
|
|
||
| - The system requires both wrist and external cameras for optimal performance | ||
| - Model performance depends on lighting conditions and camera positioning | ||
| - Regular calibration of the robot and cameras is recommended | ||
| - Check the video output directory for recorded demonstrations |
Submodule deoxys_control
added at
97396f
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,196 @@ | ||
| import os | ||
|
|
||
| os.environ["TOKENIZERS_PARALLELISM"] = "false" | ||
|
|
||
| import collections | ||
| import copy | ||
| import dataclasses | ||
| import os.path as osp | ||
| import time | ||
| from datetime import datetime | ||
| from pathlib import Path | ||
|
|
||
| import cv2 | ||
| import deoxys.utils.transform_utils as dft | ||
| import imageio | ||
| import numpy as np | ||
| import torch | ||
| import tqdm | ||
| import tyro | ||
| from deoxys import config_root | ||
| from deoxys.experimental.motion_utils import reset_joints_to | ||
| from deoxys.franka_interface import FrankaInterface | ||
| from deoxys.utils import YamlConfig | ||
| from PIL import Image | ||
| from realsense_camera import MultiCamera | ||
| from transformers import AutoModel, AutoProcessor | ||
|
|
||
| # Add your camera serial numbers here | ||
| EGO_CAMERA = "213522070137" | ||
| THIRD_CAMERA = "243222074139" | ||
|
|
||
| reset_joint_positions = [ | ||
| 0.0760389047913384, | ||
| -1.0362613022620384, | ||
| -0.054254247684777324, | ||
| -2.383951857286591, | ||
| -0.004505598470154735, | ||
| 1.3820559157131187, | ||
| 0.784935455988679, | ||
| ] | ||
|
|
||
|
|
||
| def save_rollout_video(rollout_images, save_dir): | ||
| """Saves an MP4 replay of an episode.""" | ||
| date_time = time.strftime("%Y_%m_%d-%H_%M_%S") | ||
| mp4_path = Path(save_dir) / f"{date_time}.mp4" | ||
| video_writer = imageio.get_writer(mp4_path, fps=5) | ||
| for img in rollout_images: | ||
| video_writer.append_data(img) | ||
| video_writer.close() | ||
| print(f"Saved rollout MP4 at path {mp4_path}") | ||
|
|
||
|
|
||
| @dataclasses.dataclass | ||
| class Args: | ||
| ################################################################################################################# | ||
| # Model parameters | ||
| ################################################################################################################# | ||
| resize_size: int = 224 | ||
| replan_steps: int = 5 | ||
| model_path: str = "" | ||
| repo_id: str = "" | ||
| task: str = "" | ||
|
|
||
| ################################################################################################################# | ||
| # Utils | ||
| ################################################################################################################# | ||
| video_out_path: Path = Path("experiments/7_franka/videos") # Path to save videos | ||
| max_timesteps: int = 300 # Number of timesteps to run | ||
|
|
||
|
|
||
| def convert_gripper_action(action): | ||
| action[-1] = 1 - action[-1] | ||
| if action[-1] < 0.5: | ||
| action[-1] = -1 | ||
|
|
||
| return action | ||
|
|
||
|
|
||
| def get_robot_interface(): | ||
| robot_interface = FrankaInterface(osp.join(config_root, "charmander.yml")) | ||
| controller_cfg = YamlConfig(osp.join(config_root, "osc-pose-controller.yml")).as_easydict() | ||
| controller_type = "OSC_POSE" | ||
|
|
||
| return robot_interface, controller_cfg, controller_type | ||
|
|
||
|
|
||
| def main(args: Args): | ||
| multi_camera = MultiCamera() | ||
| robot_interface, controller_cfg, controller_type = get_robot_interface() | ||
|
|
||
| model = ( | ||
| AutoModel.from_pretrained(args.model_path, dtype=torch.bfloat16, trust_remote_code=True).eval().cuda() | ||
| ) | ||
|
|
||
| processor = AutoProcessor.from_pretrained(args.model_path, trust_remote_code=True) | ||
|
|
||
| while True: | ||
| action_plan = collections.deque() | ||
| input("Press Enter to start episode ...") | ||
| reset_joints_to(robot_interface, reset_joint_positions) | ||
|
|
||
| replay_images = [] | ||
| bar = tqdm.tqdm( | ||
| range(args.max_timesteps), | ||
| position=0, | ||
| leave=True, | ||
| ncols=80, | ||
| desc="Rollout steps", | ||
| ) | ||
|
|
||
| for _ in bar: | ||
| try: | ||
| images = multi_camera.get_frame() | ||
| last_state = robot_interface._state_buffer[-1] | ||
| last_gripper_state = robot_interface._gripper_state_buffer[-1] | ||
| frame, _ = images[THIRD_CAMERA] | ||
| ego_frame, _ = images[EGO_CAMERA] | ||
|
|
||
| if not action_plan: | ||
| frame = copy.deepcopy(frame) | ||
| ego_frame = copy.deepcopy(ego_frame) | ||
| frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | ||
| ego_frame = cv2.cvtColor(ego_frame, cv2.COLOR_BGR2RGB) | ||
| replay_images.append(frame) | ||
| frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | ||
| ego_frame_rgb = cv2.cvtColor(ego_frame, cv2.COLOR_BGR2RGB) | ||
| replay_images.append(frame_rgb.copy()) | ||
|
|
||
| eef_pose = np.asarray(last_state.O_T_EE, dtype=np.float32).reshape(4, 4).T | ||
| eef_state = np.concatenate( | ||
| ( | ||
| eef_pose[:3, -1], | ||
| dft.mat2euler( | ||
| eef_pose[:3, :-1], | ||
| ), | ||
| ), | ||
| axis=-1, | ||
| ) | ||
| gripper_state = np.array([last_gripper_state.width]) | ||
| state_data = np.concatenate([eef_state.flatten(), np.array([0]), gripper_state]) | ||
|
|
||
| frame_resized = cv2.resize(frame_rgb, (args.resize_size, args.resize_size)) | ||
| ego_frame_resized = cv2.resize(ego_frame_rgb, (args.resize_size, args.resize_size)) | ||
|
|
||
| ego_frame = Image.fromarray(ego_frame_resized) | ||
| frame = Image.fromarray(frame_resized) | ||
|
|
||
| # NOTE: Change the keys to match your model | ||
| batch = { | ||
| "observation.images.image": [frame], | ||
| "observation.images.wrist_image": [ego_frame], | ||
| "observation.state": [state_data], | ||
| "task": [args.task], | ||
| "repo_id": [args.repo_id], | ||
| } | ||
| ov_out = processor.select_action( | ||
| model, | ||
| batch, | ||
| ) | ||
| action_chunk = ov_out.action[0].numpy() | ||
| assert len(action_chunk) >= args.replan_steps, ( | ||
| f"We want to replan every {args.replan_steps} steps, but policy only predicts {len(action_chunk)} steps." | ||
| ) | ||
| action_plan.extend(action_chunk[: args.replan_steps]) | ||
|
|
||
| pred_action_chunk = action_plan.popleft() | ||
| action = pred_action_chunk | ||
| rotation_matrix = dft.euler2mat(action[3:6]) | ||
| quat = dft.mat2quat(rotation_matrix) | ||
| axis_angle = dft.quat2axisangle(quat) | ||
| action[3:6] = axis_angle | ||
| action = convert_gripper_action(action) | ||
|
|
||
| robot_interface.control( | ||
| controller_type=controller_type, action=action, controller_cfg=controller_cfg | ||
| ) | ||
|
|
||
| except KeyboardInterrupt: | ||
| break | ||
|
|
||
| # saving video | ||
| video_save_path = args.video_out_path / args.task.replace(" ", "_") | ||
| video_save_path.mkdir(parents=True, exist_ok=True) | ||
| curr_time = datetime.now().strftime("%Y_%m_%d_%H_%M_%S") | ||
| save_path = video_save_path / f"{curr_time}.mp4" | ||
| video = np.stack(replay_images) | ||
| imageio.mimsave(save_path, video, fps=20) | ||
|
|
||
| if input("Do one more eval (default y)? [y/n]").lower() == "n": | ||
| break | ||
|
|
||
|
|
||
| if __name__ == "__main__": | ||
| args = tyro.cli(Args) | ||
| main(args) | ||
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.