Skip to content

Commit

Permalink
Merge pull request #319 from Exabyte-io/feature/overview
Browse files Browse the repository at this point in the history
  • Loading branch information
VsevolodX authored Feb 13, 2025
2 parents 835e926 + 958c208 commit ff60279
Show file tree
Hide file tree
Showing 2 changed files with 204 additions and 0 deletions.
203 changes: 203 additions & 0 deletions lang/en/docs/tutorials/materials/specific/overview.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,203 @@
# Specific Materials Examples

This document contains links to the tutorials that demonstrate how to reproduce material structures from published scientific manuscripts. Each entry lists the tutorial name and the corresponding manuscript reference.

---

## 1. Single-Material Structures

### 1.1. 2D Structures
#### 1.1.1. [SrTiO3 Slab](slab-strontium-titanate.md) R. I. Eglitis and David Vanderbilt
"First-principles calculations of atomic and electronic structure of SrTiO3 (001) and (011) surfaces"
Phys. Rev. B 77, 195408 (2008)

[DOI: 10.1103/PhysRevB.77.195408](https://doi.org/10.1103/PhysRevB.77.195408){:target='_blank'} [@Eglitis2008; @Mukhopadhyay2006]

![Strontium Titanate Slabs](../../../images/tutorials/materials/2d_materials/slab_strontium_titanate/0-figure-from-manuscript.webp "Strontium Titanate Slabs, FIG. 2.")

### 1.2. 0D Structures
#### 1.2.1. [Gold Nanoclusters](nanocluster-gold.md)
**A. H. Larsen, J. Kleis, K. S. Thygesen, J. K. Nørskov, and K. W. Jacobsen**,
"Electronic shell structure and chemisorption on gold nanoparticles",
*Phys. Rev. B 84, 245429 (2011)*,

[DOI: 10.1103/PhysRevB.84.245429](https://doi.org/10.1103/PhysRevB.84.245429){:target='_blank'}. [@Larsen2011]
![Gold Nanoparticles](../../../images/tutorials/materials/0d_materials/nanocluster_gold/0-manuscript-image.webp "Fig. 2. Gold Nanoparticles")

---

## 2. Multi-Material Structures

### 2.1. Interfaces
#### 2.1.1. [Interface between Graphene and h-BN](interface-2d-2d-graphene-boron-nitride.md)
**Jeil Jung, Ashley M. DaSilva, Allan H. MacDonald & Shaffique Adam**
"Origin of the band gap in graphene on hexagonal boron nitride"
Nature Communications, 2015

[DOI: 10.1038/ncomms7308](https://doi.org/10.1038/ncomms7308){:target='_blank'}
![Graphene on Hexagonal Boron Nitride](../../../images/tutorials/materials/interfaces/interface_2d_2d_graphene_boron_nitride/0-figure-from-manuscript.webp "Graphene on Hexagonal Boron Nitride, FIG. 7")

#### 2.1.2. [Interface between Graphene and SiO2 (alpha-quartz)](interface-2d-3d-graphene-silicon-dioxide.md)
**Yong-Ju Kang, Joongoo Kang, and K. J. Chang**
"Electronic structure of graphene and doping effect on SiO2"
Physical Review B, 2008

[DOI: 10.1103/PhysRevB.78.115404](https://doi.org/10.1103/PhysRevB.78.115404){:target='_blank'}
![Graphene on Silicon Dioxide](../../../images/tutorials/materials/interfaces/interface_2d_3d_graphene_silicon_dioxide/0-figure-from-manuscript.webp "Graphene on Silicon Dioxide, FIG. 1(b)")

#### 2.1.3. [Interface between Copper and SiO2 (Cristobalite)](interface-3d-3d-copper-silicon-dioxide.md)
**Shan, T.-R., Devine, B. D., Phillpot, S. R., & Sinnott, S. B.**
"Molecular dynamics study of the adhesion of Cu/SiO2interfaces using a variable-charge interatomic potential."
Physical Review B, 83(11).

[DOI: 10.1103/PhysRevB.83.115327](https://doi.org/10.1103/PhysRevB.83.115327){:target='_blank'} [@Shan2011].
![Copper on Cristobalite](../../../images/tutorials/materials/interfaces/interface_3d_3d_copper_cristobalite/0-figure-from-manuscript.webp "Copper on Cristobalite, FIG. 1")

#### 2.1.4. [High-k Metal Gate Stack (Si/SiO2/HfO2/TiN)](heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride.md)
QuantumATK tutorial: [High-k Metal Gate Stack Builder](https://docs.quantumatk.com/tutorials/hkmg_builder/hkmg_builder.html) [@Muller1999; @Robertson2006]
![High-k Metal Gate Stack](../../../images/tutorials/materials/heterostructures/heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride/original-figure.webp "High-k Metal Gate Stack")

### 2.2. Twisted Interfaces
#### 2.2.1. [Twisted Bilayer h-BN nanoribbons](interface-bilayer-twisted-nanoribbons-boron-nitride.md)
**Lede Xian, Dante M. Kennes, Nicolas Tancogne-Dejean, Massimo Altarelli, and Angel Rubio**,
"Multiflat Bands and Strong Correlations in Twisted Bilayer Boron Nitride: Doping-Induced Correlated Insulator and Superconductor" Phys. Rev. Lett. 125, 086402, 20 August 2020

[DOI: 10.1021/acs.nanolett.9b00986](https://doi.org/10.1021/acs.nanolett.9b00986){:target='_blank'} [@Xian2020]
![Twisted Bilayer Boron Nitride](../../../images/tutorials/materials/interfaces/twisted-bilayer-boron-nitride/tbbn-paper-image.png "Twisted Bilayer Boron Nitride")

#### 2.2.2. [Twisted Bilayer MoS2 commensurate lattices](interface-bilayer-twisted-commensurate-lattices-molybdenum-disulfide.md)
**Kaihui Liu, Liming Zhang, Ting Cao, Chenhao Jin, Diana Qiu, Qin Zhou, Alex Zettl, Peidong Yang, Steve G. Louie & Feng Wang**,
"Evolution of interlayer coupling in twisted molybdenum disulfide bilayers" Nature Communications volume 5, Article number: 4966 (2014)

[DOI: 10.1038/ncomms5966](https://doi.org/10.1038/ncomms5966){:target='_blank'} [@Liu2014; @Zhang2016; @Cao2018]
![Twisted Bilayer Molybdenum Disulfide](../../../images/tutorials/materials/interfaces/twisted-bilayer-molybdenum-disulfide/MoS2-twisted-bilayers.png "Twisted Bilayer Molybdenum Disulfide")

---

## 3. Defects

### 3.1. Point Defects
#### 3.1.1. [Substitutional Point Defects in Graphene](defect-point-substitution-graphene.md)
**Yoshitaka Fujimoto and Susumu Saito**
"Formation, stabilities, and electronic properties of nitrogen defects in graphene"
Physical Review B, 2011

[DOI: 10.1103/PhysRevB.84.245446](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.84.245446){:target='_blank'}
![Point Defect, Substitution, 0](../../../images/tutorials/materials/defects/defect_creation_point_substitution_graphene/0-figure-from-manuscript.webp "Point Defect, Substitution, FIG. 1.")

#### 3.1.2. [Vacancy-Substitution Pair Defects in GaN](defect-point-pair-gallium-nitride.md)
**Giacomo Miceli, Alfredo Pasquarello**,
"Self-compensation due to point defects in Mg-doped GaN", Physical Review B, 2016.

[DOI: 10.1103/PhysRevB.93.165207](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.93.165207){:target='_blank'}. [@Miceli2016]
![Point Pair Defects: Mg Substitution and Vacancy in GaN](../../../images/tutorials/materials/defects/defect_point_pair_gallium_nitride/0-figure-from-manuscript.webp "Point Defect Pair: Substitution, Vacancy in GaN, FIG. 2.")

#### 3.1.3. [Vacancy Point Defect in h-BN](defect-point-vacancy-boron-nitride.md)
**Fabian Bertoldo, Sajid Ali, Simone Manti & Kristian S. Thygesen**
"Quantum point defects in 2D materials – the QPOD database"
Nature, 2022

[DOI: 10.1038/s41524-022-00730-w](https://doi.org/10.1038/s41524-022-00730-w){:target='_blank'}
![Vacancy in h-BN](../../../images/tutorials/materials/defects/defect_point_vacancy_boron_nitride/0-figure-from-manuscript.webp "Vacancy in h-BN")

#### 3.1.4. [Interstitial Point Defect in SnO](defect-point-interstitial-tin-oxide.md)
A. Togo, F. Oba, and I. Tanaka
"First-principles calculations of native defects in tin monoxide"
Physical Review B 74, 195128 (2006)

[DOI: 10.1103/PhysRevB.74.195128](https://doi.org/10.1103/PhysRevB.74.195128){:target='_blank'}. [@Togo2006; @Wang2014; @Na-Phattalung2006]
![SnO O-interstitial](../../../images/tutorials/materials/defects/defect_point_interstitial_tin_oxide/0-figure-from-manuscript.webp "O-interstitial defect in SnO")

### 3.2. Surface Defects
#### 3.2.1. [Island Surface Defect Formation in TiN](defect-surface-island-titanium-nitride.md)
**D. G. Sangiovanni, A. B. Mei, D. Edström, L. Hultman, V. Chirita, I. Petrov, and J. E. Greene**,
"Effects of surface vibrations on interlayer mass transport: Ab initio molecular dynamics investigation of Ti adatom descent pathways and rates from TiN/TiN(001) islands", Physical Review B, 2018.
[DOI: 10.1103/PhysRevB.97.035406](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.97.035406){:target='_blank'}. [@Sangiovanni2018]
![Surface Defect](../../../images/tutorials/materials/defects/defect-creation-surface-island-titanium-nitride/0.png "Surface Defect, Island FIG. 2. a")

#### 3.2.2. [Step Surface Defect on Pt(111)](defect-surface-step-platinum.md)
Šljivančanin, Ž., & Hammer, B., "Oxygen dissociation at close-packed Pt terraces, Pt steps, and Ag-covered Pt steps studied with density functional theory." Surface Science, 515(1), 235–244.

[DOI: 10.1016/s0039-6028(02)01908-8](https://doi.org/10.1016/s0039-6028(02)01908-8){:target='_blank'}. [@Sljivancanin2002]
![Fig. 1.](../../../images/tutorials/materials/defects/defect_surface_step_platinum/0-figure-from-manuscript.webp "Fig. 1.")

#### 3.2.3. [Adatom Surface Defects on Graphene](defect-surface-adatom-graphene.md)
**Kevin T. Chan, J. B. Neaton, and Marvin L. Cohen**
"First-principles study of metal adatom adsorption on graphene"
Phys. Rev. B, 2008

[DOI: 10.1103/PhysRevB.77.235430](https://doi.org/10.1103/PhysRevB.77.235430){:target='_blank'}
![Adatom on Graphene Surface](../../../images/tutorials/materials/defects/defect-surface-adatom-graphene/me_adatom_on_hollow_graphene.webp "Fig. 1. Adatom on Graphene Surface")

### 3.3. Planar Defects
#### 3.3.1. [Grain Boundary in FCC Metals (Copper)](defect-planar-grain-boundary-3d-fcc-metals-copper.md)
Timofey Frolov, David L. Olmsted, Mark Asta & Yuri Mishin, "Structural phase transformations in metallic grain boundaries", Nature Communications, volume 4, Article number: 1899 (2013).

[DOI: 10.1038/ncomms2919](https://www.nature.com/articles/ncomms2919){:target='_blank'}. [@Frolov2013]
![Copper Grain Boundary](../../../images/tutorials/materials/defects/defect_planar_grain_boundary_3d_fcc_metal/0-figure-from-manuscript.webp "Copper Grain Boundary, FIG. 1")

#### 3.3.2. [Grain Boundary (2D) in h-BN](defect-planar-grain-boundary-2d-boron-nitride.md)
**Qiucheng Li, et al.**
"Grain Boundary Structures and Electronic Properties of Hexagonal Boron Nitride on Cu(111)"
ACS Nano, 2015

[DOI: 10.1021/acs.nanolett.5b01852](https://doi.org/10.1021/acs.nanolett.5b01852){:target='_blank'}
![h-BN Grain Boundary](../../../images/tutorials/materials/defects/defect_planar_grain_boundary_2d_boron_nitride/0-figure-from-manuscript.webp "h-BN Grain Boundary, FIG. 2c.")

---

## 4. Passivation


### 4.1. Edge Passivation
#### 4.1.1. [H-Passivated Silicon Nanowire](passivation-edge-nanowire-silicon.md)
B. Aradi, L. E. Ramos, P. Deák, Th. Köhler, F. Bechstedt, R. Q. Zhang, and Th. Frauenheim,
"Theoretical study of the chemical gap tuning in silicon nanowires"
Phys. Rev. B 76, 035305 (2007)
DOI: [10.1103/PhysRevB.76.035305](https://doi.org/10.1103/PhysRevB.76.035305){:target='_blank'} [@Aradi2007]
![Passivated Silicon nanowire](../../../images/tutorials/materials/passivation/passivation_edge_nanowire_silicon/0-figure-from-manuscript.webp "Passivated Silicon nanowire, FIG. 1.")


### 4.2. Surface Passivation
#### 4.2.1. [H-Passivated Silicon (100) Surface](passivation-surface-silicon.md)
Hansen, U., & Vogl, P.
"Hydrogen passivation of silicon surfaces: A classical molecular-dynamics study."
Physical Review B, 57(20), 13295–13304. (1998)

[DOI: 10.1103/PhysRevB.57.13295](https://doi.org/10.1103/PhysRevB.57.13295){:target='_blank'}. [@Hansen1998; @Northrup1991; @Boland1990]
![Si(100) H-Passivated Surface](../../../images/tutorials/materials/passivation/passivation_surface_silicon/0-figure-from-manuscript.webp "H-Passivated Silicon (100)")

---

## 5. Perturbations


### 5.1. Ripples
#### 5.1.1. [Ripple perturbation of a Graphene sheet](perturbation-ripples-graphene.md)
Thompson-Flagg, R. C., Moura, M. J. B., & Marder, M.
"Rippling of graphene"
EPL (Europhysics Letters), 85(4), 46002 (2009)

[DOI: 10.1209/0295-5075/85/46002](https://doi.org/10.1209/0295-5075/85/46002){:target='_blank'}. [@ThompsonFlagg2009; @Fasolino2007; @Openov2010]
![Rippled Graphene](../../../images/tutorials/materials/defects/perturbation_ripple_graphene/0-figure-from-manuscript.webp "Rippled Graphene, FIG. 1.")

---

## 6. Other


### 6.1. Interface Optimization
#### 6.1.1. [Gr/Ni(111) Interface Optimization](optimization-interface-film-xy-position-graphene-nickel.md)
Arjun Dahal, Matthias Batzill
"Graphene–nickel interfaces: a review"
Nanoscale, 6(5), 2548. (2014)

[DOI: 10.1039/c3nr05279f](https://doi.org/10.1039/c3nr05279f){:target='_blank'}. [@Dahal2014; @Gamo1997; @Bertoni2004]
![Gr/Ni Interface](../../../images/tutorials/materials/optimization/optimization_interface_film_xy_position_graphene_nickel/0-figure-from-manuscript.webp "Optimal position of graphene on Ni(111)")

#### 6.1.2. [Pt Adatoms Island on MoS2](defect-point-adatom-island-molybdenum-disulfide-platinum.md)
Saidi, W. A.
"Density Functional Theory Study of Nucleation and Growth of Pt Nanoparticles on MoS2(001) Surface"
Crystal Growth & Design, 15(2), 642–652. (2015)

[DOI: 10.1021/cg5013395](https://doi.org/10.1021/cg5013395){:target='_blank'}. [@Saidi2015; @Jiao2016; @Fichthorn2000; @Neugebauer1993; @Hortamani2007]![Pt Island on MoS2](../../../images/tutorials/materials/defects/defect_point_adatom_island_molybdenum_disulfide_platinum/0-figure-from-manuscript.webp "Pt island formation on MoS2")
1 change: 1 addition & 0 deletions mkdocs.yml
Original file line number Diff line number Diff line change
Expand Up @@ -225,6 +225,7 @@ nav:
- Import materials from files in various formats: tutorials/materials/import-from-files.md

- Reproducing Specific Manuscripts:
- Overview: tutorials/materials/specific/overview.md
- Substitutional Point Defects in Graphene: tutorials/materials/specific/defect-point-substitution-graphene.md
- Vacancy-Substitution Pair Defects in GaN: tutorials/materials/specific/defect-point-pair-gallium-nitride.md
- Vacancy Point Defect in h-BN: tutorials/materials/specific/defect-point-vacancy-boron-nitride.md
Expand Down

0 comments on commit ff60279

Please sign in to comment.