@@ -144,7 +144,7 @@ lemma vecCons_assoc (a b : α) (s : Fin n → α) :
144
144
funext x; cases' x using Fin.cases with x
145
145
· simp
146
146
· cases x using Fin.lastCases
147
- · simp [Fin.succ_castSucc]
147
+ · simp
148
148
case cast i =>
149
149
simp; simp only [rightConcat_castSucc, Fin.succ_castSucc i, cons_val_succ]
150
150
@@ -207,13 +207,13 @@ lemma fun_eq_vec_two {v : Fin 2 → α} : v = ![v 0, v 1] := by
207
207
208
208
lemma fun_eq_vec_three {v : Fin 3 → α} : v = ![v 0 , v 1 , v 2 ] := by
209
209
funext x
210
- cases' x using Fin.cases with x <;> simp [Fin.eq_zero]
210
+ cases' x using Fin.cases with x <;> simp
211
211
cases' x using Fin.cases with x <;> simp [Fin.eq_zero]
212
212
213
213
lemma fun_eq_vec_four {v : Fin 4 → α} : v = ![v 0 , v 1 , v 2 , v 3 ] := by
214
214
funext x
215
- cases' x using Fin.cases with x <;> simp [Fin.eq_zero]
216
- cases' x using Fin.cases with x <;> simp [Fin.eq_zero]
215
+ cases' x using Fin.cases with x <;> simp
216
+ cases' x using Fin.cases with x <;> simp
217
217
cases' x using Fin.cases with x <;> simp [Fin.eq_zero]
218
218
219
219
lemma injective_vecCons {f : Fin n → α} (h : Function.Injective f) {a} (ha : ∀ i, a ≠ f i) : Function.Injective (a :> f) := by
@@ -614,7 +614,7 @@ def liftVec : ∀ {n} (f : (Fin n → α) → β),
614
614
615
615
lemma liftVec_mk {n} (f : (Fin n → α) → β) (h) (v : Fin n → α) :
616
616
liftVec f h (Quotient.mk s ∘ v) = f v := by
617
- induction' n with n ih <;> simp [liftVec, empty_eq, Quotient.liftOn_mk ]
617
+ induction' n with n ih <;> simp [liftVec, empty_eq]
618
618
simpa using ih (fun v' => f (vecHead v :> v'))
619
619
(fun v₁ v₂ hv => h (vecHead v :> v₁) (vecHead v :> v₂) (Fin.cases (refl _) hv)) (vecTail v)
620
620
@@ -704,8 +704,8 @@ lemma ofFn_get_eq_map_cast {n} (g : α → β) (as : List α) {h} :
704
704
ofFn (fun i => g (as.get (i.cast h)) : Fin n → β) = as.map g := by
705
705
ext i b; simp
706
706
by_cases hi : i < n
707
- · simp [hi, List.ofFnNthVal, List. getElem?_eq_getElem (h ▸ hi)]
708
- · simp [hi, List.ofFnNthVal, List. getElem?_eq_none (le_of_not_gt $ h ▸ hi)]
707
+ · simp [hi, List.getElem?_eq_getElem (h ▸ hi)]
708
+ · simp [hi, List.getElem?_eq_none (le_of_not_gt $ h ▸ hi)]
709
709
710
710
variable {m : Type _ → Type _} {α : Type _} {β : Type _} [Monad m]
711
711
@@ -727,10 +727,10 @@ lemma remove_nil (a : α) : [].remove a = [] := by simp [List.remove]
727
727
lemma eq_remove_cons {l : List α} : (ψ :: l).remove ψ = l.remove ψ := by induction l <;> simp_all [List.remove];
728
728
729
729
@[simp]
730
- lemma remove_singleton_of_ne {φ ψ : α} (h : φ ≠ ψ) : [φ].remove ψ = [φ] := by simp_all [List.remove, Ne.symm ];
730
+ lemma remove_singleton_of_ne {φ ψ : α} (h : φ ≠ ψ) : [φ].remove ψ = [φ] := by simp_all [List.remove];
731
731
732
732
lemma mem_remove_iff {l : List α} : b ∈ l.remove a ↔ b ∈ l ∧ b ≠ a := by
733
- simp [List.remove, List.of_mem_filter ]
733
+ simp [List.remove]
734
734
735
735
lemma mem_of_mem_remove {a b : α} {l : List α} (h : b ∈ l.remove a) : b ∈ l := by
736
736
rw [mem_remove_iff] at h; exact h.1
0 commit comments