|
| 1 | +import Foundation.FirstOrder.Q.Basic |
| 2 | +import Foundation.FirstOrder.PeanoMinus.Basic |
| 3 | + |
| 4 | +lemma Nat.iff_lt_exists_add_succ : n < m ↔ ∃ k, m = n + (k + 1) := by |
| 5 | + constructor; |
| 6 | + . intro h; |
| 7 | + use m - n - 1; |
| 8 | + omega; |
| 9 | + . rintro ⟨k, rfl⟩; |
| 10 | + apply Nat.lt_add_of_pos_right; |
| 11 | + omega; |
| 12 | + |
| 13 | + |
| 14 | +namespace LO.RobinsonQ |
| 15 | + |
| 16 | +open FirstOrder FirstOrder.Arithmetic |
| 17 | + |
| 18 | +namespace Countermodel |
| 19 | + |
| 20 | +def OmegaAddOne := Option ℕ |
| 21 | + |
| 22 | +namespace OmegaAddOne |
| 23 | + |
| 24 | +instance : NatCast OmegaAddOne := ⟨fun i ↦ .some i⟩ |
| 25 | + |
| 26 | +instance (n : ℕ) : OfNat OmegaAddOne n := ⟨.some n⟩ |
| 27 | + |
| 28 | +instance : Top OmegaAddOne := ⟨.none⟩ |
| 29 | + |
| 30 | +instance : ORingStruc OmegaAddOne where |
| 31 | + add a b := |
| 32 | + match a, b with |
| 33 | + | .some n, .some m => n + m |
| 34 | + | ⊤, _ => ⊤ |
| 35 | + | _, ⊤ => ⊤ |
| 36 | + mul a b := |
| 37 | + match a, b with |
| 38 | + | .some n, .some m => n * m |
| 39 | + | .some 0, ⊤ => 0 |
| 40 | + | ⊤, .some 0 => 0 |
| 41 | + | _, _ => ⊤ |
| 42 | + lt a b := |
| 43 | + match a, b with |
| 44 | + | .some n, .some m => n < m |
| 45 | + | _, ⊤ => True |
| 46 | + | ⊤, .some _ => False |
| 47 | + |
| 48 | + |
| 49 | +@[simp] lemma coe_zero : (↑(0 : ℕ) : OmegaAddOne) = 0 := rfl |
| 50 | + |
| 51 | +@[simp] lemma coe_one : (↑(1 : ℕ) : OmegaAddOne) = 1 := rfl |
| 52 | + |
| 53 | +@[simp] lemma coe_add (a b : ℕ) : ↑(a + b) = ((↑a + ↑b) : OmegaAddOne) := rfl |
| 54 | + |
| 55 | +-- @[simp] lemma coe_mul (a b : ℕ) : ↑(a * b) = ((↑a * ↑b) : OmegaAddOne) := sorry |
| 56 | + |
| 57 | +@[simp] lemma lt_coe_iff (n m : ℕ) : (n : OmegaAddOne) < (m : OmegaAddOne) ↔ n < m := by rfl |
| 58 | + |
| 59 | +@[simp] lemma not_top_lt (n : ℕ) : ¬⊤ < (n : OmegaAddOne) := by rintro ⟨⟩ |
| 60 | + |
| 61 | +@[simp] lemma lt_top {n : ℕ} : (n : OmegaAddOne) < ⊤ := by trivial |
| 62 | + |
| 63 | +@[simp] lemma top_add_zero : (⊤ : OmegaAddOne) + 0 = ⊤ := by rfl |
| 64 | + |
| 65 | +@[simp] lemma top_lt_top : (⊤ : OmegaAddOne) < ⊤ := by trivial |
| 66 | + |
| 67 | +@[simp] lemma top_add : (⊤ : OmegaAddOne) + a = ⊤ := by match a with | ⊤ | .some n => rfl |
| 68 | + |
| 69 | +@[simp] lemma add_top : a + (⊤ : OmegaAddOne) = ⊤ := by match a with | ⊤ | .some n => rfl |
| 70 | + |
| 71 | + |
| 72 | +variable {a b : OmegaAddOne} |
| 73 | + |
| 74 | +@[simp] lemma add_zero : a + 0 = a := by match a with | ⊤ | .some n => trivial; |
| 75 | + |
| 76 | +@[simp] lemma add_succ : a + (b + 1) = a + b + 1 := by match a, b with | ⊤, ⊤ | ⊤, .some n | .some m, ⊤ | .some n, .some m => tauto; |
| 77 | + |
| 78 | +@[simp] lemma mul_zero : a * 0 = 0 := by match a with | ⊤ | .some 0 | .some (n + 1) => rfl; |
| 79 | + |
| 80 | +@[simp] |
| 81 | +lemma mul_succ : a * (b + 1) = a * b + a := by |
| 82 | + match a, b with |
| 83 | + | ⊤ , ⊤ |
| 84 | + | ⊤ , .some 0 |
| 85 | + | ⊤ , .some (n + 1) |
| 86 | + | .some 0 , .some n |
| 87 | + | .some 0 , ⊤ |
| 88 | + | .some (m + 1), .some n |
| 89 | + | .some (m + 1), ⊤ |
| 90 | + => rfl |
| 91 | + |
| 92 | +lemma succ_inj : a + 1 = b + 1 → a = b := by |
| 93 | + match a, b with |
| 94 | + | ⊤, ⊤ | ⊤, .some m | .some n, ⊤ => simp; |
| 95 | + | .some n, .some m => |
| 96 | + intro h; |
| 97 | + apply Option.mem_some_iff.mpr; |
| 98 | + simpa using Option.mem_some_iff.mp h; |
| 99 | + |
| 100 | +@[simp] |
| 101 | +lemma succ_ne_zero : a + 1 ≠ 0 := by |
| 102 | + match a with |
| 103 | + | ⊤ => simp; |
| 104 | + | .some n => apply Option.mem_some_iff.not.mpr; simp; |
| 105 | + |
| 106 | +@[simp] |
| 107 | +lemma zero_or_succ : a = 0 ∨ ∃ b, a = b + 1 := by |
| 108 | + match a with |
| 109 | + | .some 0 => left; rfl; |
| 110 | + | .some (n + 1) => right; use n; rfl; |
| 111 | + | ⊤ => right; use ⊤; rfl; |
| 112 | + |
| 113 | +@[simp] |
| 114 | +lemma lt_def : a < b ↔ ∃ c, a + c + 1 = b := by |
| 115 | + match a, b with |
| 116 | + | ⊤, ⊤ => simp; |
| 117 | + | ⊤, .some n => simp [(show ¬(⊤ : OmegaAddOne) < .some n by tauto)]; |
| 118 | + | .some m, ⊤ => |
| 119 | + simp only [(show .some m < (⊤ : OmegaAddOne) by tauto), true_iff]; |
| 120 | + use ⊤; |
| 121 | + simp; |
| 122 | + | .some m, .some n => |
| 123 | + apply Iff.trans (show some m < some n ↔ m < n by rfl); |
| 124 | + apply Iff.trans Nat.iff_lt_exists_add_succ; |
| 125 | + constructor; |
| 126 | + . intro h; |
| 127 | + obtain ⟨k, rfl⟩ : ∃ k : ℕ, m + (k + 1) = n := by tauto; |
| 128 | + use k; |
| 129 | + tauto; |
| 130 | + . rintro ⟨c, hc⟩; |
| 131 | + match c with |
| 132 | + | .none => simp at hc; |
| 133 | + | .some c => use c; exact Option.mem_some_iff.mp hc |>.symm; |
| 134 | + |
| 135 | +end OmegaAddOne |
| 136 | + |
| 137 | +set_option linter.flexible false in |
| 138 | +instance : OmegaAddOne ⊧ₘ* 𝐐 := ⟨by |
| 139 | + intro σ h; |
| 140 | + rcases h; |
| 141 | + case equal h => |
| 142 | + have : OmegaAddOne ⊧ₘ* (𝐄𝐐 : ArithmeticTheory) := inferInstance |
| 143 | + exact modelsTheory_iff.mp this h |
| 144 | + case succInj => |
| 145 | + suffices ∀ (f : ℕ → OmegaAddOne), f 0 + 1 = f 1 + 1 → f 0 = f 1 by simpa [models_iff]; |
| 146 | + intro _; apply OmegaAddOne.succ_inj; |
| 147 | + all_goals simp [models_iff]; |
| 148 | +⟩ |
| 149 | + |
| 150 | +end Countermodel |
| 151 | + |
| 152 | +lemma unprovable_neSucc : 𝐐 ⊬ “x | x + 1 ≠ x” := unprovable_of_countermodel (M := Countermodel.OmegaAddOne) (fun x ↦ ⊤) _ (by simp) |
| 153 | + |
| 154 | +end LO.RobinsonQ |
| 155 | + |
| 156 | + |
| 157 | + |
| 158 | +namespace LO |
| 159 | + |
| 160 | +open FirstOrder FirstOrder.Arithmetic |
| 161 | + |
| 162 | +namespace PeanoMinus |
| 163 | + |
| 164 | +variable {M : Type*} [ORingStruc M] [M ⊧ₘ* 𝐏𝐀⁻] |
| 165 | + |
| 166 | +instance : M ⊧ₘ* 𝐐 := modelsTheory_iff.mpr <| by |
| 167 | + intro φ h |
| 168 | + rcases h |
| 169 | + case equal h => |
| 170 | + have : M ⊧ₘ* (𝐄𝐐 : ArithmeticTheory) := inferInstance |
| 171 | + exact modelsTheory_iff.mp this h |
| 172 | + case addSucc h => |
| 173 | + suffices ∀ (f : ℕ → M), f 0 + (f 1 + 1) = f 0 + f 1 + 1 by simpa [models_iff]; |
| 174 | + intro f; |
| 175 | + rw [add_assoc] |
| 176 | + case mulSucc h => |
| 177 | + suffices ∀ (f : ℕ → M), f 0 * (f 1 + 1) = f 0 * f 1 + f 0 by simpa [models_iff]; |
| 178 | + intro f; |
| 179 | + calc |
| 180 | + f 0 * (f 1 + 1) = (f 0 * f 1) + (f 0 * 1) := by rw [mul_add_distr] |
| 181 | + _ = (f 0 * f 1) + f 0 := by rw [mul_one] |
| 182 | + ; |
| 183 | + case zeroOrSucc h => |
| 184 | + suffices ∀ (f : ℕ → M), f 0 = 0 ∨ ∃ x, f 0 = x + 1 by simpa [models_iff]; |
| 185 | + intro f; |
| 186 | + by_cases h : 0 < f 0; |
| 187 | + . right; apply eq_succ_of_pos h; |
| 188 | + . left; simpa using h; |
| 189 | + case ltDef h => |
| 190 | + suffices ∀ (f : ℕ → M), f 0 < f 1 ↔ ∃ x, f 0 + (x + 1) = f 1 by simpa [models_iff]; |
| 191 | + intro f; |
| 192 | + apply Iff.trans lt_iff_exists_add; |
| 193 | + constructor; |
| 194 | + . rintro ⟨a, ha₁, ha₂⟩; |
| 195 | + obtain ⟨b, rfl⟩ : ∃ b, a = b + 1 := eq_succ_of_pos ha₁; |
| 196 | + use b; |
| 197 | + tauto; |
| 198 | + . rintro ⟨a, ha⟩; |
| 199 | + use (a + 1); |
| 200 | + constructor; |
| 201 | + . simp; |
| 202 | + . apply ha.symm; |
| 203 | + all_goals simp [models_iff]; |
| 204 | + |
| 205 | +instance : 𝐐 ⪯ 𝐏𝐀⁻ := oRing_weakerThan_of.{0} _ _ fun _ _ _ ↦ inferInstance |
| 206 | + |
| 207 | +instance w : 𝐐 ⪱ 𝐏𝐀⁻ := Entailment.StrictlyWeakerThan.of_unprovable_provable RobinsonQ.unprovable_neSucc $ by |
| 208 | + apply oRing_provable_of.{0}; |
| 209 | + intro _ _ _; |
| 210 | + simp [models_iff]; |
| 211 | + |
| 212 | +end PeanoMinus |
| 213 | + |
| 214 | +end LO |
0 commit comments