The code release is in progress.
Create a conda environment from environment.yml
: conda env create -f environment.yml
- For data access, please get in touch with [email protected].
The file structure should be
- utils
- data
|- raw_test
|- grf.pkl
|- pos.pkl
|- rot.pkl
|- torque.pkl
|- weight.pkl
|- raw_train
|- ...
|- nimble_test
|- figure
|- walking
|- walking.pkl
- osim
|- Geometry
|- .....
|- Rajagopal2015_passiveCal_hipAbdMoved_noArms.osim
|- vtp_to_ply.py
- models
|- containing SMPL models from https://smpl.is.tue.mpg.de
|- containing Rajagopal2015 model without arm from https://addbiomechanics.org/download_data.html
- convert.py
- adb_motion_visualize.py
- main.py
- main_freeze.py
- dataset.py
- engine.py
- Run
python convert.py
to convert the raw data into a different format with per-sample pickle files including axis-angle format SMPL parameters, joints, and markers. The torques stored are acquired by summing two consecutive torques in the simulation.
You could download the checkpoints here.
- Run
python main.py config_path=config/IDFD_mkr.yml USE_WANDB=True Timestamp=False
to pre-train the ImDy model. InIDFD_mkr.yml
, you should modify the data path.
joint_tor: true
dpath: # your data path to imdy_train #
cls_aug: false
......
joint_tor: true
dpath: # your data path to imdy_test #
cls_aug: false
- Run
python main_freeze.py config_path=config/adb_mkr.yml USE_WANDB=True Timestamp=False
to train the Addbiomechanics model.
Run python adb_motion_visualize.py
to visualize the motion from Addbiomechanics Dataset frame by frame.
In line 64, you could change the angles of camera to better visualize the motion.
scene.set_camera(angles=(-pi/8,pi/2+pi/4,0),distance=2.5)