Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Creation of arxiv-2023 folder #481

Open
wants to merge 8 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Empty file added datasets/arxiv-2023/LICENSE
Empty file.
1 change: 1 addition & 0 deletions datasets/arxiv-2023/LLM
Submodule LLM added at 6a25ec
82 changes: 82 additions & 0 deletions datasets/arxiv-2023/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,82 @@
# ARXIV-2023

## Dataset Description

A text attributed graph dataset where each node is associated with multiple text attributes.
It is collected to be compared with ogbn-arxiv. Both datasets represent directed citation networks where each node corresponds to a paper published on arXiv and each edge indicates one paper citing another.

Statistics:
- Nodes: 33868
- Edges: 305672
- Number of Classes: 40

#### Citation

- Original Source
+ [Website](https://github.com/TRAIS-Lab/LLM-Structured-Data)



```
@misc{huang2023llms,
title={Can LLMs Effectively Leverage Graph Structural Information: When and Why},
author={Jin Huang and Xingjian Zhang and Qiaozhu Mei and Jiaqi Ma},
year={2023},
eprint={2309.16595},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```

- Current Version
+ [Website](https://github.com/TRAIS-Lab/LLM-Structured-Data)



```
@misc{huang2023llms,
title={Can LLMs Effectively Leverage Graph Structural Information: When and Why},
author={Jin Huang and Xingjian Zhang and Qiaozhu Mei and Jiaqi Ma},
year={2023},
eprint={2309.16595},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```


## Available Tasks


- Task type: `NodeClassification`


#### Citation

```
@misc{huang2023llms,
title={Can LLMs Effectively Leverage Graph Structural Information: When and Why},
author={Jin Huang and Xingjian Zhang and Qiaozhu Mei and Jiaqi Ma},
year={2023},
eprint={2309.16595},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```

<!-- Insert the BibTeX citation into the above code block. -->

## Preprocessing

The data files and task config file in GLI format are transformed in arxiv-2023.ipynb file. Raw data aquried in TRAIS-Lab/LLM-Structured-Data folder.

### Requirements

```
openai
pytorch
PyG
ogb
```


194 changes: 194 additions & 0 deletions datasets/arxiv-2023/arxiv-2023.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,194 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# arxiv-2023 conversion script"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/var/folders/51/yl5_04f90f13_y68cyyqz0j80000gn/T/ipykernel_48974/3045227301.py:3: DeprecationWarning: \n",
"Pyarrow will become a required dependency of pandas in the next major release of pandas (pandas 3.0),\n",
"(to allow more performant data types, such as the Arrow string type, and better interoperability with other libraries)\n",
"but was not found to be installed on your system.\n",
"If this would cause problems for you,\n",
"please provide us feedback at https://github.com/pandas-dev/pandas/issues/54466\n",
" \n",
" import pandas as pd\n"
]
}
],
"source": [
"import os\n",
"import torch\n",
"import pandas as pd\n",
"import numpy\n",
"import json"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"base_path=\"./LLM/dataset/arxiv_2023\"\n",
"# Load processed data\n",
"edge_index = torch.load(os.path.join(base_path, \"processed\", \"edge_index.pt\"))\n",
" \n",
"# Load raw data\n",
"# edge_df = pd.read_csv(os.path.join(base_path, \"raw\", \"edge.csv.gz\"), compression='gzip')\n",
"titles_df = pd.read_csv(os.path.join(base_path, \"raw\", \"titles.csv.gz\"), compression='gzip')\n",
"abstracts_df = pd.read_csv(os.path.join(base_path, \"raw\", \"abstracts.csv.gz\"), compression='gzip')\n",
"ids_df = pd.read_csv(os.path.join(base_path, \"raw\", \"ids.csv.gz\"), compression='gzip')\n",
"labels_df = pd.read_csv(os.path.join(base_path, \"raw\", \"labels.csv.gz\"), compression='gzip')\n",
" \n",
"# Load split data\n",
"train_id_df = pd.read_csv(os.path.join(base_path, \"split\", \"train.csv.gz\"), compression='gzip')\n",
"val_id_df = pd.read_csv(os.path.join(base_path, \"split\", \"valid.csv.gz\"), compression='gzip')\n",
"test_id_df = pd.read_csv(os.path.join(base_path, \"split\", \"test.csv.gz\"), compression='gzip')\n",
" \n",
"num_nodes = len(ids_df)\n",
"titles = titles_df['titles'].tolist()\n",
"abstracts = abstracts_df['abstracts'].tolist()\n",
"ids = ids_df['ids'].tolist()\n",
"labels = labels_df['labels'].tolist()\n",
"train_id = train_id_df['train_id'].tolist()\n",
"val_id = val_id_df['val_id'].tolist()\n",
"test_id = test_id_df['test_id'].tolist()\n",
"\n",
"features = torch.load(os.path.join(base_path, \"processed\", \"features.pt\"))\n",
"\n",
"y = torch.load(os.path.join(base_path, \"processed\", \"labels.pt\"))\n",
" \n",
"train_mask = torch.tensor([x in train_id for x in range(num_nodes)])\n",
"val_mask = torch.tensor([x in val_id for x in range(num_nodes)])\n",
"test_mask = torch.tensor([x in test_id for x in range(num_nodes)])\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"from gli.io import save_graph, Attribute\n",
"node_attrs=[\n",
" Attribute(\n",
" \"Titles\",\n",
" numpy.array(titles),\n",
" \"Title of each node\",\n",
" \"str\",\n",
" \"Tensor\",\n",
" ),\n",
" Attribute(\n",
" \"Abstracts\",\n",
" numpy.array(abstracts),\n",
" \"Abstract of each article(node)\",\n",
" \"str\",\n",
" \"Tensor\",\n",
" ),\n",
" Attribute(\n",
" \"Ids\",\n",
" numpy.array([str(id) for id in ids]),\n",
" \"Id of each article(node)\",\n",
" \"str\",\n",
" \"Tensor\",\n",
" ),\n",
" Attribute(\n",
" \"Labels\",\n",
" numpy.array(labels),\n",
" \"Label\",\n",
" \"str\",\n",
" \"Tensor\",\n",
" ),\n",
" \n",
"]\n",
"\n",
"metadata = save_graph(\n",
" name=\"arxiv-2023\",\n",
" edge=numpy.array(edge_index).T,\n",
" num_nodes=num_nodes,\n",
" node_attrs=node_attrs,\n",
" description=\"ARXIV-2023 dataset.\",\n",
" cite=\"@misc{huang2023llms,\\ntitle={Can LLMs Effectively Leverage Graph Structural Information: When and Why},\\nauthor={Jin Huang and Xingjian Zhang and Qiaozhu Mei and Jiaqi Ma},\\nyear={2023},\\neprint={2309.16595},\\narchivePrefix={arXiv},\\nprimaryClass={cs.LG}\\n}\",\n",
")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": []
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([ 4, 6, 9, ..., 33865, 33866, 33867])"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from gli.io import save_task_node_classification\n",
"\n",
"task_data = save_task_node_classification(\n",
" name=\"arxiv-2023\",\n",
" description=\"Node classification on arxiv-2023 dataset.\",\n",
" feature=[\"Node/Titles\",\"Node/Abstracts\"],\n",
" target=\"Node/Labels\",\n",
" num_classes=40,\n",
" train_set=train_mask.nonzero().squeeze().numpy(),\n",
" val_set=val_mask.nonzero().nonzero().squeeze().numpy(),\n",
" test_set=test_mask.nonzero().nonzero().squeeze().numpy(),\n",
" task_id=\"1\"\n",
")\n",
"train_mask.nonzero().squeeze().numpy()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "env",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
48 changes: 48 additions & 0 deletions datasets/arxiv-2023/metadata.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,48 @@
{
"description": "ARXIV-2023 dataset.",
"data": {
"Node": {
"Titles": {
"description": "Title of each node",
"type": "str",
"format": "Tensor",
"file": "arxiv-2023__graph__4c1b3c1c22882e1d9660a6e5cafcd1a4.npz",
"key": "Node_Titles"
},
"Abstracts": {
"description": "Abstract of each article(node)",
"type": "str",
"format": "Tensor",
"file": "arxiv-2023__graph__4c1b3c1c22882e1d9660a6e5cafcd1a4.npz",
"key": "Node_Abstracts"
},
"Ids": {
"description": "Id of each article(node)",
"type": "str",
"format": "Tensor",
"file": "arxiv-2023__graph__4c1b3c1c22882e1d9660a6e5cafcd1a4.npz",
"key": "Node_Ids"
},
"Labels": {
"description": "Label",
"type": "str",
"format": "Tensor",
"file": "arxiv-2023__graph__4c1b3c1c22882e1d9660a6e5cafcd1a4.npz",
"key": "Node_Labels"
}
},
"Edge": {
"_Edge": {
"file": "arxiv-2023__graph__4c1b3c1c22882e1d9660a6e5cafcd1a4.npz",
"key": "Edge_Edge"
}
},
"Graph": {
"_NodeList": {
"file": "arxiv-2023__graph__Graph_NodeList__a133ca6cee0eff3cc4ae10d024cc0c02.sparse.npz"
}
}
},
"citation": "@misc{huang2023llms,\ntitle={Can LLMs Effectively Leverage Graph Structural Information: When and Why},\nauthor={Jin Huang and Xingjian Zhang and Qiaozhu Mei and Jiaqi Ma},\nyear={2023},\neprint={2309.16595},\narchivePrefix={arXiv},\nprimaryClass={cs.LG}\n}",
"is_heterogeneous": false
}
22 changes: 22 additions & 0 deletions datasets/arxiv-2023/task_node_classification_1.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,22 @@
{
"description": "Node classification on arxiv-2023 dataset.",
"type": "NodeClassification",
"feature": [
"Node/Titles",
"Node/Abstracts"
],
"target": "Node/Labels",
"num_classes": 40,
"train_set": {
"file": "arxiv-2023__task_node_classification_1__707e9444940a9744a72ae8a990fe9136.npz",
"key": "train_set"
},
"val_set": {
"file": "arxiv-2023__task_node_classification_1__707e9444940a9744a72ae8a990fe9136.npz",
"key": "val_set"
},
"test_set": {
"file": "arxiv-2023__task_node_classification_1__707e9444940a9744a72ae8a990fe9136.npz",
"key": "test_set"
}
}