Welcome to LinkedIn Automate Comment! This project leverages web scraping, sentiment analysis, and AI-driven text generation to automate meaningful LinkedIn interactions. π―
- Project Overview
- Featured In
- How It Works
- Features
- Directory Structure
- Setup and Installation
- Usage
- Contributing
- License
π‘ LinkedIn Automate Comment simplifies professional networking by:
- β Scraping LinkedIn posts from your feed.
- β Performing sentiment analysis on posts and comments.
- β Generating AI-powered, context-aware comments.
- β Automating the posting of comments on LinkedIn.
Ideal for professionals who want to stay active on LinkedIn with minimal effort! π
1οΈβ£ Scrape Posts: web_scrapper.py
logs into LinkedIn and collects posts.
2οΈβ£ Analyze Sentiment: analyze.py
determines the tone of posts/comments.
3οΈβ£ Generate Comments: llm.py
creates AI-powered, relevant responses.
4οΈβ£ Post Comments: test.py
automates comment posting via Selenium.
π― Web Scraping: Extracts LinkedIn posts efficiently. π Sentiment Analysis: Evaluates post/comment tone. π€ AI-Powered Comments: Generates concise, relevant responses. β‘ Automation: Uses a headless browser to post comments. π PDF Reports: Exports insights as downloadable PDFs.
Directory structure:
βββ hiteshydv001-linkedin-automate-comment/
βββ README.md
βββ anlyze.py
βββ contribution.md
βββ linkedin_posts.csv
βββ llm.py
βββ main.py
βββ requirements.txt
βββ service.json
βββ web_scrapper.py
βββ .env.local
βββ JWoC/
β βββ Readme.md
βββ agents/
β βββ __init__.py
β βββ agent_base.py
β βββ generate_comment_agent.py
β βββ refiner_agent.py
β βββ sanitize_data_tool.py
β βββ sanitize_data_validator_agent.py
β βββ sentiment_analysis_agent.py
β βββ summarize_tool.py
β βββ summarize_validator_agent.py
β βββ validator_agent.py
β βββ write_post_tool.py
β βββ write_post_validator_agent.py
βββ frontend/
β βββ README.md
β βββ components.json
β βββ eslint.config.mjs
β βββ next.config.ts
β βββ package-lock.json
β βββ package.json
β βββ postcss.config.mjs
β βββ tailwind.config.ts
β βββ tsconfig.json
β βββ .gitignore
β βββ public/
β β βββ linkedin-automation-icon.avif
β βββ src/
β βββ app/
β β βββ globals.css
β β βββ layout.tsx
β β βββ page.tsx
β β βββ generate_comments/
β β β βββ page.tsx
β β βββ sentiment_analysis/
β β β βββ page.tsx
β β βββ summarize/
β β β βββ page.tsx
β β βββ write_post/
β β βββ page.tsx
β βββ components/
β β βββ main-nav.tsx
β β βββ theme-provider.tsx
β β βββ ui/
β β βββ button.tsx
β β βββ card.tsx
β β βββ dialog.tsx
β β βββ dropdown-menu.tsx
β β βββ form.tsx
β β βββ input.tsx
β β βββ label.tsx
β β βββ select.tsx
β β βββ tabs.tsx
β β βββ textarea.tsx
β β βββ toast.tsx
β β βββ toaster.tsx
β βββ hooks/
β β βββ use-toast.ts
β βββ lib/
β βββ utils.ts
βββ .github/
βββ dependabot.yml
βββ workflows/
βββ codeql.yml
- π Python 3.8+
- π Google API Key (for Generative AI)
- π Chrome & ChromeDriver (ensure compatibility)
1οΈβ£ Clone the repository:
git clone https://github.com/hiteshydv001/linkedin-automate-comment.git
cd linkedin-automate-comment
2οΈβ£ Install required packages:
pip install -r requirements.txt
3οΈβ£ Configure environment variables in a .env
file:
EMAIL=[email protected]
PASSWORD=your_password
GOOGLE_API_KEY=your_google_api_key
4οΈβ£ Ensure Chrome & ChromeDriver are installed.
python web_scrapper.py
python analyze.py
python llm.py
python test.py
π― Contributions are welcome! Follow these steps:
- Fork the repository.
- Create a new branch:
git checkout -b feature-name
- Commit your changes:
git commit -m "Add feature description"
- Push to your branch:
git push origin feature-name
- Open a pull request. π
This project is licensed under the MIT License. See the LICENSE file for details.
π Enjoy automating your LinkedIn interactions with LinkedIn Automate Comment
! π
Please refer to our
- contribution.md for general open source contribution
- JWoC guide for contribution under JGEC Winter of Code