Skip to content

Welcome to the LinkedIn Automate Comment project! πŸš€πŸ€– This tool combines web scraping, sentiment analysis, and natural language processing 🧠✨ to automate meaningful LinkedIn interactions by generating and posting thoughtful comments πŸ’¬πŸ’‘. Boost your engagement effortlessly! πŸš€πŸ”₯

Notifications You must be signed in to change notification settings

Hiteshydv001/Linkedin-automate-comment

Repository files navigation

πŸš€ LinkedIn Automate Comment

Welcome to LinkedIn Automate Comment! This project leverages web scraping, sentiment analysis, and AI-driven text generation to automate meaningful LinkedIn interactions. 🎯

Table of Contents


Project Overview

πŸ’‘ LinkedIn Automate Comment simplifies professional networking by:

  • βœ… Scraping LinkedIn posts from your feed.
  • βœ… Performing sentiment analysis on posts and comments.
  • βœ… Generating AI-powered, context-aware comments.
  • βœ… Automating the posting of comments on LinkedIn.

Ideal for professionals who want to stay active on LinkedIn with minimal effort! πŸš€


Featured In

jgec JWOC Winter of Code JWoC provides a fully immersive learning experience for students and first-time contributors by promoting the wonders of open-source software and crafting a community of new and experienced technical developers. The best projects are selected for this program. Students get acquainted with the projects from the mentors during the Community Bonding Period. Students work on these projects during the coding phase. At the end of the coding period, the winners of the programs are announced on the basis of their contribution in terms of quantity as well as quality.

How It Works πŸ› οΈ

1️⃣ Scrape Posts: web_scrapper.py logs into LinkedIn and collects posts. 2️⃣ Analyze Sentiment: analyze.py determines the tone of posts/comments. 3️⃣ Generate Comments: llm.py creates AI-powered, relevant responses. 4️⃣ Post Comments: test.py automates comment posting via Selenium.


Features ✨

🎯 Web Scraping: Extracts LinkedIn posts efficiently. πŸ“Š Sentiment Analysis: Evaluates post/comment tone. πŸ€– AI-Powered Comments: Generates concise, relevant responses. ⚑ Automation: Uses a headless browser to post comments. πŸ“„ PDF Reports: Exports insights as downloadable PDFs.


Directory Structure πŸ“

Directory structure:
└── hiteshydv001-linkedin-automate-comment/
    β”œβ”€β”€ README.md
    β”œβ”€β”€ anlyze.py
    β”œβ”€β”€ contribution.md
    β”œβ”€β”€ linkedin_posts.csv
    β”œβ”€β”€ llm.py
    β”œβ”€β”€ main.py
    β”œβ”€β”€ requirements.txt
    β”œβ”€β”€ service.json
    β”œβ”€β”€ web_scrapper.py
    β”œβ”€β”€ .env.local
    β”œβ”€β”€ JWoC/
    β”‚   └── Readme.md
    β”œβ”€β”€ agents/
    β”‚   β”œβ”€β”€ __init__.py
    β”‚   β”œβ”€β”€ agent_base.py
    β”‚   β”œβ”€β”€ generate_comment_agent.py
    β”‚   β”œβ”€β”€ refiner_agent.py
    β”‚   β”œβ”€β”€ sanitize_data_tool.py
    β”‚   β”œβ”€β”€ sanitize_data_validator_agent.py
    β”‚   β”œβ”€β”€ sentiment_analysis_agent.py
    β”‚   β”œβ”€β”€ summarize_tool.py
    β”‚   β”œβ”€β”€ summarize_validator_agent.py
    β”‚   β”œβ”€β”€ validator_agent.py
    β”‚   β”œβ”€β”€ write_post_tool.py
    β”‚   └── write_post_validator_agent.py
    β”œβ”€β”€ frontend/
    β”‚   β”œβ”€β”€ README.md
    β”‚   β”œβ”€β”€ components.json
    β”‚   β”œβ”€β”€ eslint.config.mjs
    β”‚   β”œβ”€β”€ next.config.ts
    β”‚   β”œβ”€β”€ package-lock.json
    β”‚   β”œβ”€β”€ package.json
    β”‚   β”œβ”€β”€ postcss.config.mjs
    β”‚   β”œβ”€β”€ tailwind.config.ts
    β”‚   β”œβ”€β”€ tsconfig.json
    β”‚   β”œβ”€β”€ .gitignore
    β”‚   β”œβ”€β”€ public/
    β”‚   β”‚   └── linkedin-automation-icon.avif
    β”‚   └── src/
    β”‚       β”œβ”€β”€ app/
    β”‚       β”‚   β”œβ”€β”€ globals.css
    β”‚       β”‚   β”œβ”€β”€ layout.tsx
    β”‚       β”‚   β”œβ”€β”€ page.tsx
    β”‚       β”‚   β”œβ”€β”€ generate_comments/
    β”‚       β”‚   β”‚   └── page.tsx
    β”‚       β”‚   β”œβ”€β”€ sentiment_analysis/
    β”‚       β”‚   β”‚   └── page.tsx
    β”‚       β”‚   β”œβ”€β”€ summarize/
    β”‚       β”‚   β”‚   └── page.tsx
    β”‚       β”‚   └── write_post/
    β”‚       β”‚       └── page.tsx
    β”‚       β”œβ”€β”€ components/
    β”‚       β”‚   β”œβ”€β”€ main-nav.tsx
    β”‚       β”‚   β”œβ”€β”€ theme-provider.tsx
    β”‚       β”‚   └── ui/
    β”‚       β”‚       β”œβ”€β”€ button.tsx
    β”‚       β”‚       β”œβ”€β”€ card.tsx
    β”‚       β”‚       β”œβ”€β”€ dialog.tsx
    β”‚       β”‚       β”œβ”€β”€ dropdown-menu.tsx
    β”‚       β”‚       β”œβ”€β”€ form.tsx
    β”‚       β”‚       β”œβ”€β”€ input.tsx
    β”‚       β”‚       β”œβ”€β”€ label.tsx
    β”‚       β”‚       β”œβ”€β”€ select.tsx
    β”‚       β”‚       β”œβ”€β”€ tabs.tsx
    β”‚       β”‚       β”œβ”€β”€ textarea.tsx
    β”‚       β”‚       β”œβ”€β”€ toast.tsx
    β”‚       β”‚       └── toaster.tsx
    β”‚       β”œβ”€β”€ hooks/
    β”‚       β”‚   └── use-toast.ts
    β”‚       └── lib/
    β”‚           └── utils.ts
    └── .github/
        β”œβ”€β”€ dependabot.yml
        └── workflows/
            └── codeql.yml


Setup and Installation πŸ“¦

Prerequisites

  • 🐍 Python 3.8+
  • πŸ”‘ Google API Key (for Generative AI)
  • 🌍 Chrome & ChromeDriver (ensure compatibility)

Installation Steps

1️⃣ Clone the repository:

git clone https://github.com/hiteshydv001/linkedin-automate-comment.git
cd linkedin-automate-comment

2️⃣ Install required packages:

pip install -r requirements.txt

3️⃣ Configure environment variables in a .env file:

EMAIL=[email protected]
PASSWORD=your_password
GOOGLE_API_KEY=your_google_api_key

4️⃣ Ensure Chrome & ChromeDriver are installed.


Usage 🏁

Step 1: Scrape LinkedIn Posts

python web_scrapper.py

Step 2: Perform Sentiment Analysis

python analyze.py

Step 3: Generate Comments

python llm.py

Step 4: Post Comments

python test.py

Contributing 🌟

🎯 Contributions are welcome! Follow these steps:

  1. Fork the repository.
  2. Create a new branch:
    git checkout -b feature-name
  3. Commit your changes:
    git commit -m "Add feature description"
  4. Push to your branch:
    git push origin feature-name
  5. Open a pull request. πŸš€

License βš–οΈ

This project is licensed under the MIT License. See the LICENSE file for details.


πŸŽ‰ Enjoy automating your LinkedIn interactions with LinkedIn Automate Comment! πŸš€

πŸ“œ Contributing Guide for specific purposes and competitons βš–οΈ


Please refer to our

About

Welcome to the LinkedIn Automate Comment project! πŸš€πŸ€– This tool combines web scraping, sentiment analysis, and natural language processing 🧠✨ to automate meaningful LinkedIn interactions by generating and posting thoughtful comments πŸ’¬πŸ’‘. Boost your engagement effortlessly! πŸš€πŸ”₯

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published