Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

metaplotter_pl_timescale: Import read_data() from metaplotter instead #111

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
53 changes: 27 additions & 26 deletions metaplotter.py
Original file line number Diff line number Diff line change
Expand Up @@ -128,32 +128,33 @@ def plotting(output_label, timeseries_dict, riskmodelsetting1, riskmodelsetting2
plt.savefig(outputfilename)
plt.show()

timeseries = read_data()
if __name__ == "__main__":
timeseries = read_data()

# for just two different riskmodel settings
plotting(output_label="fig_contracts_survival_1_2", timeseries_dict=timeseries, riskmodelsetting1="one", \
riskmodelsetting2="two", series1="contracts", series2="operational", plottype1="mean", plottype2="median")
plotting(output_label="fig_reinsurers_contracts_survival_1_2", timeseries_dict=timeseries, riskmodelsetting1="one", \
riskmodelsetting2="two", series1="reincontracts", series2="reinoperational", plottype1="mean", plottype2="median")
plotting(output_label="fig_premium_1_2", timeseries_dict=timeseries, riskmodelsetting1="one", riskmodelsetting2="two", \
series1="premium", series2=None, plottype1="mean", plottype2=None)
# for just two different riskmodel settings
plotting(output_label="fig_contracts_survival_1_2", timeseries_dict=timeseries, riskmodelsetting1="one", \
riskmodelsetting2="two", series1="contracts", series2="operational", plottype1="mean", plottype2="median")
plotting(output_label="fig_reinsurers_contracts_survival_1_2", timeseries_dict=timeseries, riskmodelsetting1="one", \
riskmodelsetting2="two", series1="reincontracts", series2="reinoperational", plottype1="mean", plottype2="median")
plotting(output_label="fig_premium_1_2", timeseries_dict=timeseries, riskmodelsetting1="one", riskmodelsetting2="two", \
series1="premium", series2=None, plottype1="mean", plottype2=None)

raise SystemExit
# for four different riskmodel settings
plotting(output_label="fig_contracts_survival_1_2", timeseries_dict=timeseries, riskmodelsetting1="one", \
riskmodelsetting2="two", series1="contracts", series2="operational", additionalriskmodelsetting3="three", \
additionalriskmodelsetting4="four", plottype1="mean", plottype2="median")
plotting(output_label="fig_contracts_survival_3_4", timeseries_dict=timeseries, riskmodelsetting1="three", \
riskmodelsetting2="four", series1="contracts", series2="operational", additionalriskmodelsetting3="one", \
additionalriskmodelsetting4="two", plottype1="mean", plottype2="median")
plotting(output_label="fig_reinsurers_contracts_survival_1_2", timeseries_dict=timeseries, riskmodelsetting1="one", \
riskmodelsetting2="two", series1="reincontracts", series2="reinoperational", \
additionalriskmodelsetting3="three", additionalriskmodelsetting4="four", plottype1="mean", plottype2="median")
plotting(output_label="fig_reinsurers_contracts_survival_3_4", timeseries_dict=timeseries, riskmodelsetting1="three", \
riskmodelsetting2="four", series1="reincontracts", series2="reinoperational", \
additionalriskmodelsetting3="one", additionalriskmodelsetting4="two", plottype1="mean", plottype2="median")
plotting(output_label="fig_premium_1_2", timeseries_dict=timeseries, riskmodelsetting1="one", riskmodelsetting2="two", \
series1="premium", series2=None, additionalriskmodelsetting3="three", additionalriskmodelsetting4="four", \
plottype1="mean", plottype2=None)
raise SystemExit
# for four different riskmodel settings
plotting(output_label="fig_contracts_survival_1_2", timeseries_dict=timeseries, riskmodelsetting1="one", \
riskmodelsetting2="two", series1="contracts", series2="operational", additionalriskmodelsetting3="three", \
additionalriskmodelsetting4="four", plottype1="mean", plottype2="median")
plotting(output_label="fig_contracts_survival_3_4", timeseries_dict=timeseries, riskmodelsetting1="three", \
riskmodelsetting2="four", series1="contracts", series2="operational", additionalriskmodelsetting3="one", \
additionalriskmodelsetting4="two", plottype1="mean", plottype2="median")
plotting(output_label="fig_reinsurers_contracts_survival_1_2", timeseries_dict=timeseries, riskmodelsetting1="one", \
riskmodelsetting2="two", series1="reincontracts", series2="reinoperational", \
additionalriskmodelsetting3="three", additionalriskmodelsetting4="four", plottype1="mean", plottype2="median")
plotting(output_label="fig_reinsurers_contracts_survival_3_4", timeseries_dict=timeseries, riskmodelsetting1="three", \
riskmodelsetting2="four", series1="reincontracts", series2="reinoperational", \
additionalriskmodelsetting3="one", additionalriskmodelsetting4="two", plottype1="mean", plottype2="median")
plotting(output_label="fig_premium_1_2", timeseries_dict=timeseries, riskmodelsetting1="one", riskmodelsetting2="two", \
series1="premium", series2=None, additionalriskmodelsetting3="three", additionalriskmodelsetting4="four", \
plottype1="mean", plottype2=None)

#pdb.set_trace()
#pdb.set_trace()
57 changes: 1 addition & 56 deletions metaplotter_pl_timescale.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,63 +5,8 @@
import time
import glob

def read_data():
# do not overwrite old pdfs
#if os.path.exists("data/fig_one_and_two_rm_comp.pdf"):
# os.rename("data/fig_one_and_two_rm_comp.pdf", "data/fig_one_and_two_rm_comp_old_" + time.strftime('%Y_%b_%d_%H_%M') + ".pdf")
#if os.path.exists("data/fig_three_and_four_rm_comp.pdf"):
# os.rename("data/fig_three_and_four_rm_comp.pdf", "data/fig_three_and_four_rm_comp_old_" + time.strftime('%Y_%b_%d_%H_%M') + ".pdf")
from metaplotter import read_data

upper_bound = 75
lower_bound = 25

timeseries_dict = {}
timeseries_dict["mean"] = {}
timeseries_dict["median"] = {}
timeseries_dict["quantile25"] = {}
timeseries_dict["quantile75"] = {}

filenames_ones = glob.glob("data/one*.dat")
filenames_twos = glob.glob("data/two*.dat")
filenames_threes = glob.glob("data/three*.dat")
filenames_fours = glob.glob("data/four*.dat")
filenames_ones.sort()
filenames_twos.sort()
filenames_threes.sort()
filenames_fours.sort()

#assert len(filenames_ones) == len(filenames_twos) == len(filenames_threes) == len(filenames_fours)
all_filenames = filenames_ones + filenames_twos + filenames_threes + filenames_fours

for filename in all_filenames:
# read files
rfile = open(filename, "r")
data = [eval(k) for k in rfile]
rfile.close()

# compute data series
data_means = []
data_medians = []
data_q25 = []
data_q75 = []
for i in range(len(data[0])):
data_means.append(np.mean([item[i] for item in data]))
data_q25.append(np.percentile([item[i] for item in data], lower_bound))
data_q75.append(np.percentile([item[i] for item in data], upper_bound))
data_medians.append(np.median([item[i] for item in data]))
data_means = np.array(data_means)
data_medians = np.array(data_medians)
data_q25 = np.array(data_q25)
data_q75 = np.array(data_q75)

# record data series
timeseries_dict["mean"][filename] = data_means
timeseries_dict["median"][filename] = data_medians
timeseries_dict["quantile25"][filename] = data_q25
timeseries_dict["quantile75"][filename] = data_q75
return timeseries_dict



def plotting(output_label, timeseries_dict, riskmodelsetting1, riskmodelsetting2, series1, series2=None, additionalriskmodelsetting3=None, additionalriskmodelsetting4=None, plottype1="mean", plottype2="mean"):
# dictionaries
Expand Down
57 changes: 1 addition & 56 deletions metaplotter_pl_timescale_additional_measures.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,63 +5,8 @@
import time
import glob

def read_data():
# do not overwrite old pdfs
#if os.path.exists("data/fig_one_and_two_rm_comp.pdf"):
# os.rename("data/fig_one_and_two_rm_comp.pdf", "data/fig_one_and_two_rm_comp_old_" + time.strftime('%Y_%b_%d_%H_%M') + ".pdf")
#if os.path.exists("data/fig_three_and_four_rm_comp.pdf"):
# os.rename("data/fig_three_and_four_rm_comp.pdf", "data/fig_three_and_four_rm_comp_old_" + time.strftime('%Y_%b_%d_%H_%M') + ".pdf")
from metaplotter import read_data

upper_bound = 75
lower_bound = 25

timeseries_dict = {}
timeseries_dict["mean"] = {}
timeseries_dict["median"] = {}
timeseries_dict["quantile25"] = {}
timeseries_dict["quantile75"] = {}

filenames_ones = glob.glob("data/one*.dat")
filenames_twos = glob.glob("data/two*.dat")
filenames_threes = glob.glob("data/three*.dat")
filenames_fours = glob.glob("data/four*.dat")
filenames_ones.sort()
filenames_twos.sort()
filenames_threes.sort()
filenames_fours.sort()

#assert len(filenames_ones) == len(filenames_twos) == len(filenames_threes) == len(filenames_fours)
all_filenames = filenames_ones + filenames_twos + filenames_threes + filenames_fours

for filename in all_filenames:
# read files
rfile = open(filename, "r")
data = [eval(k) for k in rfile]
rfile.close()

# compute data series
data_means = []
data_medians = []
data_q25 = []
data_q75 = []
for i in range(len(data[0])):
data_means.append(np.mean([item[i] for item in data]))
data_q25.append(np.percentile([item[i] for item in data], lower_bound))
data_q75.append(np.percentile([item[i] for item in data], upper_bound))
data_medians.append(np.median([item[i] for item in data]))
data_means = np.array(data_means)
data_medians = np.array(data_medians)
data_q25 = np.array(data_q25)
data_q75 = np.array(data_q75)

# record data series
timeseries_dict["mean"][filename] = data_means
timeseries_dict["median"][filename] = data_medians
timeseries_dict["quantile25"][filename] = data_q25
timeseries_dict["quantile75"][filename] = data_q75
return timeseries_dict



def plotting(output_label, timeseries_dict, riskmodelsetting1, riskmodelsetting2, series1, series2=None, additionalriskmodelsetting3=None, additionalriskmodelsetting4=None, plottype1="mean", plottype2="mean"):
# dictionaries
Expand Down