Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix syntax for CBLS, JuMP and MOI breaking changes #21

Merged
merged 2 commits into from
Jul 22, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
name = "ConstraintModels"
uuid = "841a6ec5-cac3-4c42-9a0a-4b21c9553698"
authors = ["Jean-Francois Baffier"]
version = "0.2.0"
version = "0.3.0"

[deps]
CBLS = "a3809bfe-37bb-4d48-a667-bac4c6be8d90"
Expand Down
4 changes: 2 additions & 2 deletions src/ConstraintModels.jl
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@ export qap
export magic_square
export mincut
export n_queens
export scheduling
# export scheduling
export sudoku

include("assignment.jl")
Expand All @@ -25,7 +25,7 @@ include("cut.jl")
include("golomb.jl")
include("magic_square.jl")
include("n_queens.jl")
include("scheduling.jl")
# include("scheduling.jl")
include("sudoku.jl")

end
12 changes: 4 additions & 8 deletions src/cut.jl
Original file line number Diff line number Diff line change
Expand Up @@ -10,16 +10,12 @@ function mincut(graph, source, sink, interdiction, ::Val{:raw})
foreach(_ -> variable!(m, d), 0:n)

# Extract error function from usual_constraint
e1 = (x; param=nothing, dom_size=n + 1) -> error_f(
usual_constraints[:ordered])(x; param, dom_size
)
e2 = (x; param=nothing, dom_size=n + 1) -> error_f(
usual_constraints[:all_different])(x; param, dom_size
)
e1 = (x; kargs...) -> error_f(USUAL_CONSTRAINTS[:ordered])(x; kargs...)
e2 = (x; kargs...) -> error_f(USUAL_CONSTRAINTS[:all_different])(x; kargs...)

# Add constraint
constraint!(m, e1, [source, separator, sink])
constraint!(m, e2, 1:(n + 1))
constraint!(m, e2, 1:(n+1))

# Add objective
objective!(m, (x...) -> o_mincut(graph, x...; interdiction))
Expand Down Expand Up @@ -56,6 +52,6 @@ Compute the minimum cut of a graph.
- `interdiction`: indicates the number of forbidden links
- `modeler`: Default to `:JuMP`.
"""
function mincut(graph; source, sink, interdiction =0, modeler = :JuMP)
function mincut(graph; source, sink, interdiction=0, modeler=:JuMP)
return mincut(graph, source, sink, interdiction, Val(modeler))
end
20 changes: 7 additions & 13 deletions src/golomb.jl
Original file line number Diff line number Diff line change
Expand Up @@ -6,20 +6,14 @@ function golomb(n, L, ::Val{:raw})
foreach(_ -> variable!(m, d), 1:n)

# Extract error function from usual_constraint
e1 = (x; param=nothing, dom_size=n) -> error_f(
usual_constraints[:all_different])(x; param, dom_size
)
e2 = (x; param=nothing, dom_size=n) -> error_f(
usual_constraints[:all_equal_param])(x; param, dom_size
)
e3 = (x; param=nothing, dom_size=n) -> error_f(
usual_constraints[:dist_different])(x; param, dom_size
)
e1 = (x; kargs...) -> error_f(USUAL_CONSTRAINTS[:all_different])(x; kargs...)
e2 = (x; kargs...) -> error_f(USUAL_CONSTRAINTS[:all_equal])(x; kargs...)
e3 = (x; kargs...) -> error_f(USUAL_CONSTRAINTS[:dist_different])(x; kargs...)

# # Add constraints
constraint!(m, e1, 1:n)
constraint!(m, x -> e2(x; param=0), 1:1)
for i in 1:(n - 1), j in (i + 1):n, k in i:(n - 1), l in (k + 1):n
constraint!(m, e2, 1:1)
for i in 1:(n-1), j in (i+1):n, k in i:(n-1), l in (k+1):n
(i, j) < (k, l) || continue
constraint!(m, e3, [i, j, k, l])
end
Expand All @@ -39,7 +33,7 @@ function golomb(n, L, ::Val{:JuMP})
@constraint(m, X in Ordered()) # for output convenience, keep them ordered

# No two pairs have the same length
for i in 1:(n - 1), j in (i + 1):n, k in i:(n - 1), l in (k + 1):n
for i in 1:(n-1), j in (i+1):n, k in i:(n-1), l in (k+1):n
(i, j) < (k, l) || continue
@constraint(m, [X[i], X[j], X[k], X[l]] in DistDifferent())
end
Expand All @@ -55,4 +49,4 @@ end

Model the Golomb problem of `n` marks on the ruler `0:L`. The `modeler` argument accepts :raw, and :JuMP (default), which refer respectively to the solver internal model, the MathOptInterface model, and the JuMP model.
"""
golomb(n, L=n^2; modeler = :JuMP) = golomb(n, L, Val(modeler))
golomb(n, L=n^2; modeler=:JuMP) = golomb(n, L, Val(modeler))
18 changes: 5 additions & 13 deletions src/magic_square.jl
Original file line number Diff line number Diff line change
Expand Up @@ -7,11 +7,11 @@ function magic_square(n, ::Val{:JuMP})
@constraint(model, vec(X) in AllDifferent())

for i in 1:n
@constraint(model, X[i,:] in SumEqualParam(magic_constant))
@constraint(model, X[:,i] in SumEqualParam(magic_constant))
@constraint(model, X[i, :] in AllEqual(; val=magic_constant))
@constraint(model, X[:, i] in AllEqual(; val=magic_constant))
end
@constraint(model, [X[i,i] for i in 1:n] in SumEqualParam(magic_constant))
@constraint(model, [X[i,n + 1 - i] for i in 1:n] in SumEqualParam(magic_constant))
@constraint(model, [X[i, i] for i in 1:n] in AllEqual(; val=magic_constant))
@constraint(model, [X[i, n+1-i] for i in 1:n] in AllEqual(; val=magic_constant))

return model, X
end
Expand All @@ -21,12 +21,4 @@ end

Create a model for the magic square problem of order `n`. The `modeler` argument accepts :JuMP (default), which refer to the solver the JuMP model.
"""
magic_square(n; modeler = :JuMP) = magic_square(n, Val(modeler))








magic_square(n; modeler=:JuMP) = magic_square(n, Val(modeler))
2 changes: 1 addition & 1 deletion src/scheduling.jl
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
function scheduling(processing_times, due_dates, ::Val{:raw})
m = model(; kind = :scheduling)
m = model(; kind=:scheduling)
n = length(processing_times) # number of jobs
max_time = sum(processing_times)

Expand Down
52 changes: 25 additions & 27 deletions src/sudoku.jl
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@ function sudoku(n, start, ::Val{:raw})
N = n^2
d = domain(1:N)

m = model(;kind=:sudoku)
m = model(; kind=:sudoku)

# Add variables
if isnothing(start)
Expand All @@ -12,19 +12,17 @@ function sudoku(n, start, ::Val{:raw})
end


e = (x; param=nothing, dom_size=N) -> error_f(
usual_constraints[:all_different])(x; param=param, dom_size=dom_size
)
e = (x; kargs...) -> error_f(USUAL_CONSTRAINTS[:all_different])(x; kargs...)

# Add constraints: line, columns; blocks
foreach(i -> constraint!(m, e, (i * N + 1):((i + 1) * N)), 0:(N - 1))
foreach(i -> constraint!(m, e, [j * N + i for j in 0:(N - 1)]), 1:N)
foreach(i -> constraint!(m, e, (i*N+1):((i+1)*N)), 0:(N-1))
foreach(i -> constraint!(m, e, [j * N + i for j in 0:(N-1)]), 1:N)

for i in 0:(n - 1)
for j in 0:(n - 1)
for i in 0:(n-1)
for j in 0:(n-1)
vars = Vector{Int}()
for k in 1:n
for l in 0:(n - 1)
for l in 0:(n-1)
push!(vars, (j * n + l) * N + i * n + k)
end
end
Expand All @@ -45,16 +43,16 @@ function sudoku(n, start, ::Val{:MOI})
foreach(i -> MOI.add_constraint(m, VI(i), DiscreteSet(1:N)), 1:N^2)

# Add constraints: line, columns; blocks
foreach(i -> MOI.add_constraint(m, VOV(map(VI, (i * N + 1):((i + 1) * N))),
MOIAllDifferent(N)), 0:(N - 1))
foreach(i -> MOI.add_constraint(m, VOV(map(VI, [j * N + i for j in 0:(N - 1)])),
foreach(i -> MOI.add_constraint(m, VOV(map(VI, (i*N+1):((i+1)*N))),
MOIAllDifferent(N)), 0:(N-1))
foreach(i -> MOI.add_constraint(m, VOV(map(VI, [j * N + i for j in 0:(N-1)])),
MOIAllDifferent(N)), 1:N)

for i in 0:(n - 1)
for j in 0:(n - 1)
for i in 0:(n-1)
for j in 0:(n-1)
vars = Vector{Int}()
for k in 1:n
for l in 0:(n - 1)
for l in 0:(n-1)
push!(vars, (j * n + l) * N + i * n + k)
end
end
Expand All @@ -72,16 +70,16 @@ function sudoku(n, start, ::Val{:JuMP})
@variable(m, 1 ≤ X[1:N, 1:N] ≤ N, Int)
if !isnothing(start)
for i in 1:N, j in 1:N
v_ij = start[i,j]
v_ij = start[i, j]
if 1 ≤ v_ij ≤ N
@constraint(m, X[i,j] == v_ij)
@constraint(m, X[i, j] == v_ij)
end
end
end

for i in 1:N
@constraint(m, X[i,:] in AllDifferent()) # rows
@constraint(m, X[:,i] in AllDifferent()) # columns
@constraint(m, X[i, :] in AllDifferent()) # rows
@constraint(m, X[:, i] in AllDifferent()) # columns
end
for i in 0:(n-1), j in 0:(n-1)
@constraint(m, vec(X[(i*n+1):(n*(i+1)), (j*n+1):(n*(j+1))]) in AllDifferent()) # blocks
Expand Down Expand Up @@ -119,7 +117,7 @@ solution = value.(grid)
display(solution, Val(:sudoku))
```
"""
sudoku(n; start=nothing, modeler = :JuMP) = sudoku(n, start, Val(modeler))
sudoku(n; start=nothing, modeler=:JuMP) = sudoku(n, start, Val(modeler))

@doc raw"""
```julia
Expand All @@ -138,10 +136,10 @@ SudokuInstance(P::Pair{Tuple{Int, Int}, T}...) # again, default to 9×9 sudoku,
```
Constructor functions for the `SudokuInstance` `struct`.
"""
mutable struct SudokuInstance{T <: Integer} <: AbstractMatrix{T}
A::AbstractMatrix{T} where {T <: Integer}
mutable struct SudokuInstance{T<:Integer} <: AbstractMatrix{T}
A::AbstractMatrix{T} where {T<:Integer}

function SudokuInstance(A::AbstractMatrix{T}) where {T <: Integer}
function SudokuInstance(A::AbstractMatrix{T}) where {T<:Integer}
size(A, 1) == size(A, 2) || throw(error("Sodokus must be square; received matrix of size $(size(A, 1))×$(size(A, 2))."))
isequal(sqrt(size(A, 1)), isqrt(size(A, 1))) || throw(error("SudokuInstances must be able to split into equal boxes (e.g., a 9×9 SudokuInstance has three 3×3 squares). Size given is $(size(A, 1))×$(size(A, 2))."))
new{T}(A)
Expand Down Expand Up @@ -172,8 +170,8 @@ Construct a `SudokuInstance` with the values `X` of a solver as input.
function SudokuInstance(X::Dictionary)
n = isqrt(length(X))
A = zeros(Int, n, n)
for (k,v) in enumerate(Base.Iterators.partition(X, n))
A[k,:] = v
for (k, v) in enumerate(Base.Iterators.partition(X, n))
A[k, :] = v
end
return SudokuInstance(A)
end
Expand Down Expand Up @@ -238,7 +236,7 @@ function _format_line_segment(r, col_pos, M)
line = string()
for k in axes(r, 1)
n_spaces = 1
Δ = maximum((ndigits(i) for i in M[:, (col_pos * sep_length) + k])) - ndigits(r[k])
Δ = maximum((ndigits(i) for i in M[:, (col_pos*sep_length)+k])) - ndigits(r[k])
if Δ ≥ 0
n_spaces = Δ + 1
end
Expand All @@ -259,7 +257,7 @@ function _format_line(r, M)
line = _rules[:column]
for i in 1:sep_length
abs_sep_pos = sep_length * i
line *= _format_line_segment(r[(abs_sep_pos - sep_length + 1):abs_sep_pos], i - 1, M)
line *= _format_line_segment(r[(abs_sep_pos-sep_length+1):abs_sep_pos], i - 1, M)
end

return line
Expand Down
35 changes: 16 additions & 19 deletions test/JuMP.jl
Original file line number Diff line number Diff line change
Expand Up @@ -11,10 +11,7 @@

@constraint(m, X in AllDifferent())
@constraint(m, X in AllEqual())
@constraint(m, X in AllEqualParam(2))
@constraint(m, X in AlwaysTrue())
@constraint(m, X[1:4] in DistDifferent())
@constraint(m, X[1:2] in Eq())
@constraint(m, X in Ordered())
end

Expand Down Expand Up @@ -64,15 +61,15 @@ end
@variable(model, x in DiscreteSet(0:20))
@variable(model, y in DiscreteSet(0:20))

@constraint(model, [x,y] in Predicate(v -> 6v[1] + 8v[2] >= 100 ))
@constraint(model, [x,y] in Predicate(v -> 7v[1] + 12v[2] >= 120 ))
@constraint(model, [x, y] in Predicate(v -> 6v[1] + 8v[2] >= 100))
@constraint(model, [x, y] in Predicate(v -> 7v[1] + 12v[2] >= 120))

objFunc = v -> 12v[1] + 20v[2]
@objective(model, Min, ScalarFunction(objFunc))

optimize!(model)
@info solution_summary(model)
@info "JuMP: basic opt" value(x) value(y) (12*value(x)+20*value(y))
@info "JuMP: basic opt" value(x) value(y) (12 * value(x) + 20 * value(y))
end

@testset "JuMP: Chemical equilibrium" begin
Expand All @@ -84,22 +81,22 @@ end
@info "JuMP: $compounds_names ⟺ $mixture_name" value.(X)
end

@testset "JuMP: Scheduling" begin
model, completion_times, start_times = scheduling(processing_times, due_times)
optimize!(model)
@info solution_summary(model)
@info "JuMP: scheduling" value.(start_times) value.(completion_times) processing_times due_times
@info (value.(start_times)+processing_times == value.(completion_times))
end
# @testset "JuMP: Scheduling" begin
# model, completion_times, start_times = scheduling(processing_times, due_times)
# optimize!(model)
# @info solution_summary(model)
# @info "JuMP: scheduling" value.(start_times) value.(completion_times) processing_times due_times
# @info (value.(start_times)+processing_times == value.(completion_times))
# end

@testset "JuMP: Minimum Cut" begin
graph = zeros(5, 5)
graph[1,2] = 1.0
graph[1,3] = 2.0
graph[1,4] = 3.0
graph[2,5] = 1.0
graph[3,5] = 2.0
graph[4,5] = 3.0
graph[1, 2] = 1.0
graph[1, 3] = 2.0
graph[1, 4] = 3.0
graph[2, 5] = 1.0
graph[3, 5] = 2.0
graph[4, 5] = 3.0

model, links = mincut(graph; source=1, sink=5, interdiction=1)
optimize!(model)
Expand Down
Loading
Loading