Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

use deterministic RNG initial state #304

Open
wants to merge 7 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions Project.toml
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
name = "IterativeSolvers"
uuid = "42fd0dbc-a981-5370-80f2-aaf504508153"
version = "0.9.2"
version = "0.9.3"

[deps]
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
Expand All @@ -11,4 +11,4 @@ SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"

[compat]
RecipesBase = "0.6, 0.7, 0.8, 1.0"
julia = "1.3"
julia = "1.6"
4 changes: 4 additions & 0 deletions docs/src/eigenproblems/lobpcg.md
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,10 @@ lobpcg!

A `LOBPCGIterator` is created to pre-allocate all the memory required by the method using the constructor `LOBPCGIterator(A, B, largest, X, P, C)` where `A` and `B` are the matrices from the generalized eigenvalue problem, `largest` indicates if the problem is a maximum or minimum eigenvalue problem, `X` is the initial eigenbasis, randomly sampled if not input, where `size(X, 2)` is the block size `bs`. `P` is the preconditioner, `nothing` by default, and `C` is the constraints matrix. The desired `k` eigenvalues are found `bs` at a time.

A deterministic seed is used for generating pseudo-random initial
data for the algorithm; this can be controlled by passing a
different pseudorandom number generator (an [`AbstractRNG`](https://docs.julialang.org/en/v1/stdlib/Random/#Random.AbstractRNG)) via
the `rng` keyword argument.

## References
Implementation is based on [^Knyazev1993] and [^Scipy].
Expand Down
11 changes: 8 additions & 3 deletions docs/src/linear_systems/bicgstabl.md
Original file line number Diff line number Diff line change
Expand Up @@ -15,11 +15,16 @@ The method is based on the original article [^Sleijpen1993], but does not implem

The `r` and `u` factors are pre-allocated as matrices of size $n \times (l + 1)$, so that BLAS2 methods can be used. Also the random shadow residual is pre-allocated as a vector. Hence the storage costs are approximately $2l + 3$ vectors.

A deterministic seed is used for generating pseudo-random initial
data for the algorithm; this can be controlled by passing a
different pseudorandom number generator (an [`AbstractRNG`](https://docs.julialang.org/en/v1/stdlib/Random/#Random.AbstractRNG)) via
the `rng` keyword argument.

!!! tip
BiCGStabl(l) can be used as an [iterator](@ref Iterators).

[^Sleijpen1993]:
[^Sleijpen1993]:

Sleijpen, Gerard LG, and Diederik R. Fokkema. "BiCGstab(l) for
linear equations involving unsymmetric matrices with complex spectrum."
Sleijpen, Gerard LG, and Diederik R. Fokkema. "BiCGstab(l) for
linear equations involving unsymmetric matrices with complex spectrum."
Electronic Transactions on Numerical Analysis 1.11 (1993): 2000.
4 changes: 4 additions & 0 deletions docs/src/linear_systems/idrs.md
Original file line number Diff line number Diff line change
Expand Up @@ -19,3 +19,7 @@ and the IDR chapter in [^Meurant2020].
[^VanGijzen2011]: Algorithm 913: An Elegant IDR(s) Variant that Efficiently Exploits Bi-orthogonality Properties. M. B. van Gijzen and P. Sonneveld ACM Trans. Math. Software, Vol. 38, No. 1, pp. 5:1-5:19, 2011
[^Meurant2020]: The IDR family. G. Meurant and J. Duintjer Tebbens. In: Krylov Methods for Nonsymmetric Linear Systems. Springer Series in Computational Mathematics, vol 57. Springer, 2020. [doi:10.1007/978-3-030-55251-0_10](https://doi.org/10.1007/978-3-030-55251-0_10)

A deterministic seed is used for generating pseudo-random initial
data for the algorithm; this can be controlled by passing a
different pseudorandom number generator (an [`AbstractRNG`](https://docs.julialang.org/en/v1/stdlib/Random/#Random.AbstractRNG)) via
the `rng` keyword argument.
6 changes: 6 additions & 0 deletions docs/src/svd/svdl.md
Original file line number Diff line number Diff line change
Expand Up @@ -14,4 +14,10 @@ The implementation of thick restarting follows closely that of SLEPc as describe

The singular vectors are computed directly by forming the Ritz vectors from the product of the Lanczos vectors `L.P`/`L.Q` and the singular vectors of `L.B`. Additional accuracy in the singular triples can be obtained using inverse iteration.

A deterministic seed is used for generating pseudo-random initial
data for the algorithm; this can be controlled by passing a
different pseudorandom number generator (an [`AbstractRNG`](https://docs.julialang.org/en/v1/stdlib/Random/#Random.AbstractRNG)) via
the `rng` keyword argument, or by passing an initial `v0` vector
directly.

[^Hernandez2008]: Vicente Hernández, José E. Román, and Andrés Tomás. "A robust and efficient parallel SVD solver based on restarted Lanczos bidiagonalization." Electronic Transactions on Numerical Analysis 31 (2008): 68-85.
4 changes: 4 additions & 0 deletions src/IterativeSolvers.jl
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,10 @@ eigensystems, and singular value problems.
"""
module IterativeSolvers

# deterministic seed for pseudo-random numbers
# (taken from the IterativeSolvers.jl UUID)
const seed = [0x42fd0dbc, 0xa9815370, 0x80f2aaf5, 0x04508153]

include("common.jl")
include("orthogonalize.jl")
include("history.jl")
Expand Down
6 changes: 4 additions & 2 deletions src/bicgstabl.jl
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
export bicgstabl, bicgstabl!, bicgstabl_iterator, bicgstabl_iterator!, BiCGStabIterable
using Printf
using Printf, Random
import Base: iterate

mutable struct BiCGStabIterable{precT, matT, solT, vecT <: AbstractVector, smallMatT <: AbstractMatrix, realT <: Real, scalarT <: Number}
Expand Down Expand Up @@ -29,13 +29,14 @@ function bicgstabl_iterator!(x, A, b, l::Int = 2;
max_mv_products = size(A, 2),
abstol::Real = zero(real(eltype(b))),
reltol::Real = sqrt(eps(real(eltype(b)))),
rng::AbstractRNG=MersenneTwister(seed),
initial_zero = false)
T = eltype(x)
n = size(A, 1)
mv_products = 0

# Large vectors.
r_shadow = rand(T, n)
r_shadow = rand(rng, T, n)
rs = Matrix{T}(undef, n, l + 1)
us = zeros(T, n, l + 1)

Expand Down Expand Up @@ -156,6 +157,7 @@ bicgstabl(A, b, l = 2; kwargs...) = bicgstabl!(zerox(A, b), A, b, l; initial_zer
- `max_mv_products::Int = size(A, 2)`: maximum number of matrix vector products.
For BiCGStab(l) this is a less dubious term than "number of iterations";
- `Pl = Identity()`: left preconditioner of the method;
- `rng::AbstractRNG`: generator for pseudorandom initialization
- `abstol::Real = zero(real(eltype(b)))`,
`reltol::Real = sqrt(eps(real(eltype(b))))`: absolute and relative
tolerance for the stopping condition
Expand Down
7 changes: 4 additions & 3 deletions src/idrs.jl
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,7 @@ shadow space.
is the residual in the `k`th iteration;
- `maxiter::Int = size(A, 2)`: maximum number of iterations;
- `log::Bool`: keep track of the residual norm in each iteration;
- `rng::AbstractRNG`: generator for pseudorandom initialization
- `verbose::Bool`: print convergence information during the iterations.

# Return values
Expand Down Expand Up @@ -80,8 +81,8 @@ end
end

function idrs_method!(log::ConvergenceHistory, X, A, C::T,
s::Number, Pl::precT, abstol::Real, reltol::Real, maxiter::Number; smoothing::Bool=false, verbose::Bool=false
) where {T, precT}
s::Number, Pl::precT, abstol::Real, reltol::Real, maxiter::Number; smoothing::Bool=false, verbose::Bool=false,
rng::AbstractRNG=MersenneTwister(seed)) where {T, precT}

verbose && @printf("=== idrs ===\n%4s\t%7s\n","iter","resnorm")
R = C - A*X
Expand All @@ -102,7 +103,7 @@ function idrs_method!(log::ConvergenceHistory, X, A, C::T,

Z = zero(C)

P = T[rand!(copy(C)) for k in 1:s]
P = T[rand!(rng, copy(C)) for k in 1:s]
U = T[copy(Z) for k in 1:s]
G = T[copy(Z) for k in 1:s]
Q = copy(Z)
Expand Down
25 changes: 15 additions & 10 deletions src/lobpcg.jl
Original file line number Diff line number Diff line change
Expand Up @@ -787,8 +787,8 @@ Finds the `nev` extremal eigenvalues and their corresponding eigenvectors satisf
function lobpcg(A, largest::Bool, nev::Int; kwargs...)
lobpcg(A, nothing, largest, nev; kwargs...)
end
function lobpcg(A, B, largest::Bool, nev::Int; kwargs...)
lobpcg(A, B, largest, rand(eltype(A), size(A, 1), nev); not_zeros=true, kwargs...)
function lobpcg(A, B, largest::Bool, nev::Int; rng::AbstractRNG=MersenneTwister(seed), kwargs...)
lobpcg(A, B, largest, rand(rng, eltype(A), size(A, 1), nev); not_zeros=true, rng=rng, kwargs...)
end

"""
Expand All @@ -804,6 +804,7 @@ end
## Keywords

- `not_zeros`: default is `false`. If `true`, `X0` will be assumed to not have any all-zeros column.
- `rng::AbstractRNG`: generator for pseudorandom initialization

- `log::Bool`: default is `false`; if `true`, `results.trace` will store iterations
states; if `false` only `results.trace` will be empty;
Expand All @@ -826,6 +827,7 @@ function lobpcg(A, largest::Bool, X0; kwargs...)
end
function lobpcg(A, B, largest, X0;
not_zeros=false, log=false, P=nothing, maxiter=200,
rng::AbstractRNG=MersenneTwister(seed),
C=nothing, tol::Real=default_tolerance(eltype(X0)))
X = copy(X0)
n = size(X, 1)
Expand All @@ -835,7 +837,7 @@ function lobpcg(A, B, largest, X0;

iterator = LOBPCGIterator(A, B, largest, X, P, C)

return lobpcg!(iterator, log=log, tol=tol, maxiter=maxiter, not_zeros=not_zeros)
return lobpcg!(iterator, rng=rng, log=log, tol=tol, maxiter=maxiter, not_zeros=not_zeros)
end

"""
Expand All @@ -849,6 +851,7 @@ end
## Keywords

- `not_zeros`: default is `false`. If `true`, the initial Ritz vectors will be assumed to not have any all-zeros column.
- `rng::AbstractRNG`: generator for pseudorandom initialization

- `log::Bool`: default is `false`; if `true`, `results.trace` will store iterations
states; if `false` only `results.trace` will be empty;
Expand All @@ -863,21 +866,22 @@ end

"""
function lobpcg!(iterator::LOBPCGIterator; log=false, maxiter=200, not_zeros=false,
rng::AbstractRNG=MersenneTwister(seed),
tol::Real=default_tolerance(eltype(iterator.XBlocks.block)))
X = iterator.XBlocks.block
iterator.constr!(iterator.XBlocks.block, iterator.tempXBlocks.block)
if !not_zeros
@views for j in 1:size(X,2)
if all(x -> x==0, X[:, j])
@inbounds X[:,j] .= rand.()
@inbounds X[:,j] .= rand.(rng)
end
end
iterator.constr!(iterator.XBlocks.block, iterator.tempXBlocks.block)
end
n = size(X, 1)
sizeX = size(X, 2)
iterator.iteration[] = 1
while iterator.iteration[] <= maxiter
while iterator.iteration[] <= maxiter
state = iterator(tol, log)
if log
push!(iterator.trace, state)
Expand Down Expand Up @@ -927,6 +931,7 @@ function lobpcg(A, largest::Bool, X0, nev::Int; kwargs...)
end
function lobpcg(A, B, largest::Bool, X0, nev::Int;
not_zeros=false, log=false, P=nothing, maxiter=200,
rng::AbstractRNG=MersenneTwister(seed),
C=nothing, tol::Real=default_tolerance(eltype(X0)))
n = size(X0, 1)
sizeX = size(X0, 2)
Expand All @@ -938,22 +943,22 @@ function lobpcg(A, B, largest::Bool, X0, nev::Int;
iterator = LOBPCGIterator(A, B, largest, X, nev, P, C)

r = EmptyLOBPCGResults(X, nev, tol, maxiter)
rnext = lobpcg!(iterator, log=log, tol=tol, maxiter=maxiter, not_zeros=not_zeros)
rnext = lobpcg!(iterator, rng=rng, log=log, tol=tol, maxiter=maxiter, not_zeros=not_zeros)
append!(r, rnext, 0)
converged_x = sizeX
while converged_x < nev
@views if nev-converged_x < sizeX
cutoff = sizeX-(nev-converged_x)
update!(iterator.constr!, iterator.XBlocks.block[:, 1:cutoff], iterator.XBlocks.B_block[:, 1:cutoff])
X[:, 1:sizeX-cutoff] .= X[:, cutoff+1:sizeX]
rand!(X[:, cutoff+1:sizeX])
rnext = lobpcg!(iterator, log=log, tol=tol, maxiter=maxiter, not_zeros=true)
rand!(rng, X[:, cutoff+1:sizeX])
rnext = lobpcg!(iterator, rng=rng, log=log, tol=tol, maxiter=maxiter, not_zeros=true)
append!(r, rnext, converged_x, sizeX-cutoff)
converged_x += sizeX-cutoff
else
update!(iterator.constr!, iterator.XBlocks.block, iterator.XBlocks.B_block)
rand!(X)
rnext = lobpcg!(iterator, log=log, tol=tol, maxiter=maxiter, not_zeros=true)
rand!(rng, X)
rnext = lobpcg!(iterator, rng=rng, log=log, tol=tol, maxiter=maxiter, not_zeros=true)
append!(r, rnext, converged_x)
converged_x += sizeX
end
Expand Down
17 changes: 9 additions & 8 deletions src/simple.jl
Original file line number Diff line number Diff line change
Expand Up @@ -56,13 +56,14 @@ function powm_iterable!(A, x; tol = eps(real(eltype(A))) * size(A, 2) ^ 3, maxit
end

"""
powm(B; kwargs...) -> λ, x, [history]
powm(B; rng, kwargs...) -> λ, x, [history]

See [`powm!`](@ref). Calls `powm!(B, x0; kwargs...)` with
`x0` initialized as a random, complex unit vector.
`x0` initialized as a random, complex unit vector using
`rng::AbstractRNG`.
"""
function powm(B; kwargs...)
x0 = rand(Complex{real(eltype(B))}, size(B, 1))
function powm(B; rng::AbstractRNG=MersenneTwister(seed), kwargs...)
x0 = rand(rng, Complex{real(eltype(B))}, size(B, 1))
rmul!(x0, one(eltype(B)) / norm(x0))
powm!(B, x0; kwargs...)
end
Expand Down Expand Up @@ -149,13 +150,13 @@ function powm!(B, x;
end

"""
invpowm(B; shift = σ, kwargs...) -> λ, x, [history]
invpowm(B; shift = σ, rng, kwargs...) -> λ, x, [history]

Find the approximate eigenpair `(λ, x)` of ``A`` near `shift`, where `B`
is a linear map that has the effect `B * v = inv(A - σI) * v`.

The method calls `powm!(B, x0; inverse = true, shift = σ)` with
`x0` a random, complex unit vector. See [`powm!`](@ref)
`x0` a random, complex unit vector using `rng::AbstractRNG`. See [`powm!`](@ref)

# Examples

Expand All @@ -168,8 +169,8 @@ Fmap = LinearMap{ComplexF64}((y, x) -> ldiv!(y, F, x), 50, ismutating = true)
λ, x = invpowm(Fmap, shift = σ, tol = 1e-4, maxiter = 200)
```
"""
function invpowm(B; kwargs...)
x0 = rand(Complex{real(eltype(B))}, size(B, 1))
function invpowm(B; rng::AbstractRNG=MersenneTwister(seed), kwargs...)
x0 = rand(rng, Complex{real(eltype(B))}, size(B, 1))
rmul!(x0, one(eltype(B)) / norm(x0))
invpowm!(B, x0; kwargs...)
end
Expand Down
3 changes: 2 additions & 1 deletion src/svdl.jl
Original file line number Diff line number Diff line change
Expand Up @@ -101,6 +101,7 @@ If `log` is set to `true` is given, method will output a tuple `X, L, ch`. Where

- `nsv::Int = 6`: number of singular values requested;
- `v0 = random unit vector`: starting guess vector in the domain of `A`.
- `rng::AbstractRNG`: generator for pseudorandom initialization of `v0`
The length of `q` should be the number of columns in `A`;
- `k::Int = 2nsv`: maximum number of Lanczos vectors to compute before restarting;
- `j::Int = nsv`: number of vectors to keep at the end of the restart.
Expand Down Expand Up @@ -175,7 +176,7 @@ end
#########################

function svdl_method!(log::ConvergenceHistory, A, l::Int=min(6, size(A,1)); k::Int=2l,
j::Int=l, v0::AbstractVector = Vector{eltype(A)}(randn(size(A, 2))) |> x->rmul!(x, inv(norm(x))),
j::Int=l, rng::AbstractRNG=MersenneTwister(seed), v0::AbstractVector = Vector{eltype(A)}(randn(rng, size(A, 2))) |> x->rmul!(x, inv(norm(x))),
stevengj marked this conversation as resolved.
Show resolved Hide resolved
maxiter::Int=minimum(size(A)), tol::Real=√eps(), reltol::Real=√eps(),
verbose::Bool=false, method::Symbol=:ritz, vecs=:none, dolock::Bool=false)

Expand Down