This repository is the official PyTorch implementation of the experiments in the following paper:
Junran Wu, Beng Chin Ooi, Ke Xu
- Cuda 10.1
- python==3.8.12
- torch==1.8.2
- torch_geometric==2.0.1
- torch_geometric_signed_directed==1.0.1
To run the proposed model for robust link sign prediction under random noise:
python ridge.py
--dataset {Bitcoin-Alpha, Bitcoin-OTC, ...}
name of dataset
--gnn_model {SGCN, SNEA}
the basic signed graph encoder
--noise_ratio {0, 0.1, 0.2, 0.25}
the ratio of edges being flipped
--alpha {1e-3 ~ 1e3}
the loss coefficient of KL_Y
--beta {1e-3 ~ 1e3}
the loss coefficient of KL_G
e.g.,
python ridge.py --dataset Bitcoin-Alpha --noise_ratio 0.2 --alpha 10 --beta 10If you found the provided code with our paper useful in your work, we kindly request that you cite our work.
@inproceedings{wu2025toward,
title={Toward Robust Signed Graph Learning through Joint Input-Target Denoising},
author={Wu, Junran and Ooi, Beng Chin and Xu, Ke},
booktitle={Proceedings of the 33rd ACM International Conference on Multimedia},
pages={8721--8729},
year={2025}
}