GPU-accelerated PyTorch development environment optimized for Kubeflow with JupyterLab and SSH access.
Notebooks -> + New Container / + New Notebook
ghcr.io/KNU-PLML-Lab/kubeflow-nvcr-pytorch:latest
# Your SSH public key (optional)
export SSH_PUBLIC_KEY="$(cat ~/.ssh/id_rsa.pub)"
docker-compose up -d
# with SSH
docker run -d \
-p 8888:8888 \
-p 22:22 \
--gpus all \
-e SSH_PUBLIC_KEY="$(cat ~/.ssh/id_rsa.pub)" \
-v $(pwd)/notebooks:/home/jovyan/work \
ghcr.io/KNU-PLML-Lab/kubeflow-nvcr-pytorch:latest
# Jupyter only
docker run -d \
-p 8888:8888 \
--gpus all \
-v $(pwd)/notebooks:/home/jovyan/work \
ghcr.io/KNU-PLML-Lab/kubeflow-nvcr-pytorch:latest
- Jupyter Notebook: (http 8888)
- SSH: (port 22)
Variable | Description | Default |
---|---|---|
SSH_PUBLIC_KEY |
SSH public key for authentication | None |
NB_PREFIX |
Base URL prefix for Jupyter | / |
JUPYTER_ENABLE_LAB |
Enable JupyterLab interface | yes |
# Clone the repository
git clone https://github.com/KNU-PLML-Lab/kubeflow-nvcr-pytorch.git
cd kubeflow-nvcr-pytorch
# Build the image
./build.sh