Skip to content

Laqian/Experiment

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 

Repository files navigation

Supplementary Experiments



Table 1: Ablation study of node reassignment module in ANR-GAT. Top: complete removal. Middle: replacement with WGAT layer. Bottom: our full proposed model.

Model Variant Accuracy AUC Specificity Sensitivity
ANR-GAT (w/o node reassignment) 70.56 ± 0.54 70.43 ± 0.44 72.18 ± 4.02 68.68 ± 3.86
ANR-GAT (node reassignment → WGAT) 72.07 ± 0.12 71.20 ± 0.08 83.97 ± 2.21 58.43 ± 2.30
ANR-GAT 73.71 ± 0.60 73.22 ± 0.62 80.58 ± 1.81 65.87 ± 2.11




Table 2: Performance comparison of phenotypic-brain feature similarity edge versus condition-based edge in graph construction.

Edge Construction Method Accuracy AUC Specificity Sensitivity
Phenotypic-Brain Feature Similarity 81.95 ± 0.52 81.71 ± 0.51 85.29 ± 1.87 78.12 ± 1.85
Condition-based 83.41 ± 0.35 83.00 ± 0.32 88.88 ± 0.54 77.13 ± 0.11


Table 3: Performance comparison of same-category versus different-category edge connections within conditions.

Edge Connection Type Accuracy AUC Sensitivity (Recall) Specificity
Same-category edges 82.00 ± 0.54 81.67 ± 0.59 86.58 ± 0.73 76.77 ± 1.49
Different-category edges 83.41 ± 0.35 83.00 ± 0.32 88.88 ± 0.54 77.13 ± 0.11


Table 4: Performance metrics across different top-k values for ABIDE I dataset.

Top-k Accuracy AUC Specificity Sensitivity
1 82.59 ± 0.72 82.33 ± 0.81 86.03 ± 1.66 78.62 ± 2.74
2 82.45 ± 0.31 82.10 ± 0.36 87.08 ± 1.20 77.12 ± 1.71
3 82.52 ± 0.30 82.22 ± 0.38 86.44 ± 1.62 78.01 ± 2.09
4 82.64 ± 0.52 82.33 ± 0.52 86.93 ± 1.37 77.72 ± 1.50
5 83.41 ± 0.35 83.00 ± 0.32 88.88 ± 0.54 77.13 ± 0.11
6 82.64 ± 0.44 82.28 ± 0.37 87.44 ± 1.62 77.13 ± 1.13
7 82.59 ± 0.37 82.35 ± 0.38 85.53 ± 1.08 79.16 ± 1.25

Table 5: Performance metrics across different top-k values for ADHD-200 dataset.

Top-k Accuracy AUC Sensitivity Specificity
1 77.02 ± 0.26 77.14 ± 0.25 80.27 ± 1.17 74.01 ± 1.22
2 77.61 ± 0.67 77.67 ± 0.67 79.33 ± 1.23 76.01 ± 0.96
3 78.74 ± 0.82 78.74 ± 0.84 78.67 ± 2.07 78.81 ± 1.53
4 78.95 ± 0.57 78.93 ± 0.63 78.44 ± 2.44 79.43 ± 1.54
5 78.53 ± 0.63 78.50 ± 0.57 77.82 ± 1.81 79.18 ± 2.48
6 78.76 ± 0.51 78.77 ± 0.50 78.89 ± 1.95 78.65 ± 2.00
7 78.08 ± 0.61 78.16 ± 0.67 80.36 ± 2.85 75.96 ± 2.12




Table 6: Performance comparison with and without phenotype feature fusion.

Feature Fusion Accuracy AUC Sensitivity Specificity
No Fusion 77.06 ± 0.42 76.67 ± 0.36 82.08 ± 1.38 71.27 ± 1.05
With Fusion 83.41 ± 0.35 83.00 ± 0.32 88.88 ± 0.54 77.13 ± 0.11


Table 7: Performance comparison with different fusion methods.

Method Accuracy AUC Specificity Sensitivity
Attention Fusion 82.77 ± 0.62 82.51 ± 0.57 86.33 ± 1.69 78.69 ± 1.69
Add Fusion 82.51 ± 0.71 82.23 ± 0.76 86.28 ± 0.51 78.18 ± 1.43
Concatenation Fusion 82.98 ± 0.71 82.68 ± 0.70 87.27 ± 1.54 78.09 ± 1.41
Gated Fusion (Ours) 83.41 ± 0.35 83.00 ± 0.32 88.88 ± 0.54 77.13 ± 0.11




Table 8: Performance comparison between GCN and HGCN architectures on condition-based graphs.

Model Accuracy AUC Specificity Sensitivity
GCN 79.32 ± 0.48 78.90 ± 0.45 82.15 ± 1.20 75.80 ± 1.10
HGCN 83.41 ± 0.35 83.00 ± 0.32 88.88 ± 0.54 77.13 ± 0.11




*Table 9: Performance comparison with/without similarity loss in training stages.*
Configuration Accuracy AUC Sensitivity Specificity
Stage 1 w/o similarity 73.38 ± 0.92 72.77 ± 1.01 81.28 ± 1.59 64.26 ± 2.81
Stage 1 w/ similarity 73.71 ± 0.60 73.22 ± 0.62 80.58 ± 1.81 65.87 ± 2.11
Stage 2 w/o similarity 81.95 ± 0.57 81.62 ± 0.60 86.60 ± 1.19 76.63 ± 1.46
Stage 2 w/ similarity 83.41 ± 0.35 83.00 ± 0.32 88.88 ± 0.54 77.13 ± 0.11

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published