Skip to content

Conversation

jhaotingc
Copy link
Collaborator

@jhaotingc jhaotingc commented Sep 19, 2025

Summary by CodeRabbit

  • New Features

    • Broader dtype support for routing logits (float or bfloat16).
    • Public MoE runners accept optional n_group, topk_group, and routed_scaling_factor.
  • Improvements

    • Stricter validation for Renormalize/RenormalizeNaive routing: require top_k in (0, 8] with clearer messages.
  • Tests

    • Added an integration test for FP8 block-scale MOE on a large FP8 model.

Description

Test Coverage

PR Checklist

Please review the following before submitting your PR:

  • PR description clearly explains what and why. If using CodeRabbit's summary, please make sure it makes sense.

  • PR Follows TRT-LLM CODING GUIDELINES to the best of your knowledge.

  • Test cases are provided for new code paths (see test instructions)

  • Any new dependencies have been scanned for license and vulnerabilities

  • CODEOWNERS updated if ownership changes

  • Documentation updated as needed

  • The reviewers assigned automatically/manually are appropriate for the PR.

  • Please check this after reviewing the above items as appropriate for this PR.

GitHub Bot Help

/bot [-h] ['run', 'kill', 'skip', 'reuse-pipeline'] ...

Provide a user friendly way for developers to interact with a Jenkins server.

Run /bot [-h|--help] to print this help message.

See details below for each supported subcommand.

run [--reuse-test (optional)pipeline-id --disable-fail-fast --skip-test --stage-list "A10-PyTorch-1, xxx" --gpu-type "A30, H100_PCIe" --test-backend "pytorch, cpp" --add-multi-gpu-test --only-multi-gpu-test --disable-multi-gpu-test --post-merge --extra-stage "H100_PCIe-TensorRT-Post-Merge-1, xxx" --detailed-log --debug(experimental)]

Launch build/test pipelines. All previously running jobs will be killed.

--reuse-test (optional)pipeline-id (OPTIONAL) : Allow the new pipeline to reuse build artifacts and skip successful test stages from a specified pipeline or the last pipeline if no pipeline-id is indicated. If the Git commit ID has changed, this option will be always ignored. The DEFAULT behavior of the bot is to reuse build artifacts and successful test results from the last pipeline.

--disable-reuse-test (OPTIONAL) : Explicitly prevent the pipeline from reusing build artifacts and skipping successful test stages from a previous pipeline. Ensure that all builds and tests are run regardless of previous successes.

--disable-fail-fast (OPTIONAL) : Disable fail fast on build/tests/infra failures.

--skip-test (OPTIONAL) : Skip all test stages, but still run build stages, package stages and sanity check stages. Note: Does NOT update GitHub check status.

--stage-list "A10-PyTorch-1, xxx" (OPTIONAL) : Only run the specified test stages. Examples: "A10-PyTorch-1, xxx". Note: Does NOT update GitHub check status.

--gpu-type "A30, H100_PCIe" (OPTIONAL) : Only run the test stages on the specified GPU types. Examples: "A30, H100_PCIe". Note: Does NOT update GitHub check status.

--test-backend "pytorch, cpp" (OPTIONAL) : Skip test stages which don't match the specified backends. Only support [pytorch, cpp, tensorrt, triton]. Examples: "pytorch, cpp" (does not run test stages with tensorrt or triton backend). Note: Does NOT update GitHub pipeline status.

--only-multi-gpu-test (OPTIONAL) : Only run the multi-GPU tests. Note: Does NOT update GitHub check status.

--disable-multi-gpu-test (OPTIONAL) : Disable the multi-GPU tests. Note: Does NOT update GitHub check status.

--add-multi-gpu-test (OPTIONAL) : Force run the multi-GPU tests in addition to running L0 pre-merge pipeline.

--post-merge (OPTIONAL) : Run the L0 post-merge pipeline instead of the ordinary L0 pre-merge pipeline.

--extra-stage "H100_PCIe-TensorRT-Post-Merge-1, xxx" (OPTIONAL) : Run the ordinary L0 pre-merge pipeline and specified test stages. Examples: --extra-stage "H100_PCIe-TensorRT-Post-Merge-1, xxx".

--detailed-log (OPTIONAL) : Enable flushing out all logs to the Jenkins console. This will significantly increase the log volume and may slow down the job.

--debug (OPTIONAL) : Experimental feature. Enable access to the CI container for debugging purpose. Note: Specify exactly one stage in the stage-list parameter to access the appropriate container environment. Note: Does NOT update GitHub check status.

For guidance on mapping tests to stage names, see docs/source/reference/ci-overview.md
and the scripts/test_to_stage_mapping.py helper.

kill

kill

Kill all running builds associated with pull request.

skip

skip --comment COMMENT

Skip testing for latest commit on pull request. --comment "Reason for skipping build/test" is required. IMPORTANT NOTE: This is dangerous since lack of user care and validation can cause top of tree to break.

reuse-pipeline

reuse-pipeline

Reuse a previous pipeline to validate current commit. This action will also kill all currently running builds associated with the pull request. IMPORTANT NOTE: This is dangerous since lack of user care and validation can cause top of tree to break.

@jhaotingc jhaotingc requested a review from a team as a code owner September 19, 2025 03:58
@jhaotingc jhaotingc requested a review from litaotju September 19, 2025 03:58
@jhaotingc jhaotingc force-pushed the fix_trtllm_gen_blockscale_fp8 branch from d62b3c5 to 76f901b Compare September 19, 2025 04:02
@jhaotingc jhaotingc changed the title [None][fix] fix trtllm-gen moe backend on blockwise fp8 ckpt [None][fix] fix trtllm-gen moe backend on blockwise fp8 ckpt (Qwen3-235B-A22B-FP8) Sep 19, 2025
@jhaotingc jhaotingc marked this pull request as draft September 19, 2025 04:03
Copy link
Contributor

coderabbitai bot commented Sep 19, 2025

📝 Walkthrough

Walkthrough

C++ FP8 MoE changes: accept routing logits as float or bfloat16, enforce 0 < top_k ≤ 8 for Renormalize/RenormalizeNaive, and change routing_logits pointer to a generic void*. Python custom ops: make n_group, topk_group, and routed_scaling_factor Optional in FP4/FP8 runner constructors and public entrypoints. Tests: add an FP8-block-scales integration test for Qwen3-235B.

Changes

Cohort / File(s) Summary of Changes
C++ FP8 MoE routing updates
cpp/tensorrt_llm/thop/fp8BlockScaleMoe.cpp
- Validate routing_logits dtype as float or bfloat16 (was float-only).
- For Renormalize/RenormalizeNaive, require 0 < top_k ≤ 8 and update error messaging.
- Replace routing_logits.data_ptr<float>()/float* with generic data_ptr()/void* and pass through args.routing_logits to the kernel runner.
Python custom ops: Optional grouping/scaling params
tensorrt_llm/_torch/custom_ops/trtllm_gen_custom_ops.py
- Make n_group, topk_group, and routed_scaling_factor Optional in FP4BlockScaleMoERunner.__init__, FP8BlockScaleMoERunner.__init__, and public entrypoints (including fake path _).
- Update public function signatures to accept Optional[int]/Optional[float].
Integration tests: add FP8 block-scales test
tests/integration/defs/accuracy/test_llm_api_pytorch.py
- Add TestQwen3_235B_A22B.test_fp8_block_scales, parameterized over tp/pp/ep sizes and runtime flags, testing FP8 block-scales with MOE backends (DEEPGEMM, TRTLLM) on Qwen3-235B-A22B-FP8 for MMLU and GSM8K.

Sequence Diagram(s)

sequenceDiagram
    autonumber
    participant Py as Python op (fp8_block_scale_moe_runner)
    participant Runner as FP8BlockScaleMoERunner
    participant Cpp as C++ fp8BlockScaleMoe
    participant Kernel as MoE Kernel

    Py->>Runner: __init__(..., n_group?, topk_group?, routed_scaling_factor?, routing_method_type)
    Note right of Runner: Optional params accepted (may be None)

    Py->>Cpp: invoke with tensors (routing_logits, bias, weights, scales, ...)
    Cpp->>Cpp: Validate routing_logits dtype ∈ {float, bfloat16}
    Cpp->>Cpp: If routing_method ∈ {Renormalize, RenormalizeNaive}<br/>require 0 < top_k ≤ 8
    Cpp->>Kernel: run(args with generic routing_logits pointer (void*))
    Kernel-->>Cpp: outputs
    Cpp-->>Py: outputs
Loading

Estimated code review effort

🎯 4 (Complex) | ⏱️ ~45 minutes

Pre-merge checks and finishing touches

❌ Failed checks (2 warnings)
Check name Status Explanation Resolution
Docstring Coverage ⚠️ Warning Docstring coverage is 0.00% which is insufficient. The required threshold is 80.00%. You can run @coderabbitai generate docstrings to improve docstring coverage.
Description Check ⚠️ Warning The PR description is still the repository template with placeholders and contains no concrete explanation, test coverage details, or checklist items; the pr_objectives/raw_summary confirm the actual code changes (FP8 block-scale MOE C++ fixes including routing_logits type change, Python API signature updates, and a new FP8-block-scales integration test) but none of these are documented in the PR body. Because the template fields are empty, reviewers lack the required context, test references, and merge guidance. Replace the template placeholders with a concise Description summarizing what changed and why, explicitly list modified files and public API impacts (e.g., routing_logits type change to void*, FP4/FP8 runner signature changes), enumerate relevant tests added or updated (the new FP8-block-scales integration test and any unit/regression tests), and complete the PR Checklist (CODEOWNERS, documentation, test stages and validation steps) before requesting final review.
✅ Passed checks (1 passed)
Check name Status Explanation
Title Check ✅ Passed The title clearly summarizes the main change: fixing the trtllm-gen MoE backend to support blockwise FP8 checkpoints (Qwen3-235B-A22B-FP8), which matches the fp8 block-scale MoE and runner signature changes in the PR. It is specific and related to the changeset rather than being generic or off-topic.
✨ Finishing touches
  • 📝 Generate Docstrings
🧪 Generate unit tests
  • Create PR with unit tests
  • Post copyable unit tests in a comment

Thanks for using CodeRabbit! It's free for OSS, and your support helps us grow. If you like it, consider giving us a shout-out.

❤️ Share

Comment @coderabbitai help to get the list of available commands and usage tips.

@jhaotingc jhaotingc force-pushed the fix_trtllm_gen_blockscale_fp8 branch from 76f901b to 5acb38a Compare September 19, 2025 21:00
@jhaotingc jhaotingc marked this pull request as ready for review September 19, 2025 21:02
Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 1

♻️ Duplicate comments (1)
tensorrt_llm/_torch/custom_ops/trtllm_gen_custom_ops.py (1)

589-608: Silence fake-path unused parameters (ruff ARG001) per static analysis

Same change as above; underscores are harmless and keep the schema intact.

🧹 Nitpick comments (5)
tests/integration/defs/accuracy/test_llm_api_pytorch.py (1)

2862-2893: Add SM120/121 skip guard for TRTLLM MOE to match NVFP4 tests

Parity with existing NVFP4 tests avoids CI flakes on unsupported SMs.

Apply this diff inside test_fp8_block_scales immediately after the function signature:

 def test_fp8_block_scales(self, tp_size, pp_size, ep_size, attention_dp,
                           cuda_graph, overlap_scheduler, moe_backend):
+    if moe_backend == "TRTLLM" and (get_sm_version() == 120 or get_sm_version() == 121):
+        pytest.skip("MOE TRTLLM backend does not support SM version 120 or 121")
     pytorch_config = dict(
cpp/tensorrt_llm/thop/fp8BlockScaleMoe.cpp (2)

41-45: Fix typo in arch check error text

Use “SM100 family” to match isSM100Family().

-    TORCH_CHECK(tensorrt_llm::common::isSM100Family(), "Only SM100f is supported by FP8 block scale MOE");
+    TORCH_CHECK(tensorrt_llm::common::isSM100Family(), "Only SM100 family is supported by FP8 block scale MOE");

74-76: Top‑k constraint now enforced for Renormalize/Naive

Good to gate unsupported configs; please mirror this constraint in Python‑side validation or docs to surface earlier to users.

tensorrt_llm/_torch/custom_ops/trtllm_gen_custom_ops.py (2)

545-552: Expose Optionals in the FP8 op schema: good; align fake path to silence ARG001

Update the fake impl’s parameter names to underscore unused args to satisfy ruff without changing schema.

 @fp8_block_scale_moe_runner.register_fake
 def _(
-    routing_logits: torch.Tensor,
-    routing_bias: torch.Tensor,
+    _routing_logits: torch.Tensor,
+    _routing_bias: torch.Tensor,
     hidden_states: torch.Tensor,
-    hidden_states_scale: torch.Tensor,
-    gemm1_weights: torch.Tensor,
-    gemm1_weights_scale: torch.Tensor,
-    gemm2_weights: torch.Tensor,
-    gemm2_weights_scale: torch.Tensor,
-    num_experts: int,
-    top_k: int,
-    n_group: Optional[int],
-    topk_group: Optional[int],
-    intermediate_size: int,
-    local_expert_offset: int,
-    local_num_experts: int,
-    routed_scaling_factor: Optional[float],
-    routing_method_type: int,
+    _hidden_states_scale: torch.Tensor,
+    _gemm1_weights: torch.Tensor,
+    _gemm1_weights_scale: torch.Tensor,
+    _gemm2_weights: torch.Tensor,
+    _gemm2_weights_scale: torch.Tensor,
+    _num_experts: int,
+    _top_k: int,
+    _n_group: Optional[int],
+    _topk_group: Optional[int],
+    _intermediate_size: int,
+    _local_expert_offset: int,
+    _local_num_experts: int,
+    _routed_scaling_factor: Optional[float],
+    _routing_method_type: int,
 ) -> torch.Tensor:

533-553: Consider making routing_bias Optional in FP8 inputs to match C++ signature

C++ accepts optional bias; Python FP8 dataclass/op currently requires a Tensor. Making it Optional keeps APIs consistent and avoids surprises if bias is absent.

-    routing_bias: torch.Tensor
+    routing_bias: Optional[torch.Tensor]

And in the op schema:

-    routing_bias: torch.Tensor,
+    routing_bias: Optional[torch.Tensor],
📜 Review details

Configuration used: Path: .coderabbit.yaml

Review profile: CHILL

Plan: Pro

📥 Commits

Reviewing files that changed from the base of the PR and between 8adaf0b and 5acb38a.

📒 Files selected for processing (3)
  • cpp/tensorrt_llm/thop/fp8BlockScaleMoe.cpp (4 hunks)
  • tensorrt_llm/_torch/custom_ops/trtllm_gen_custom_ops.py (3 hunks)
  • tests/integration/defs/accuracy/test_llm_api_pytorch.py (1 hunks)
🧰 Additional context used
📓 Path-based instructions (6)
**/*.{h,hpp,hh,hxx,cpp,cxx,cc,cu,cuh}

📄 CodeRabbit inference engine (CODING_GUIDELINES.md)

**/*.{h,hpp,hh,hxx,cpp,cxx,cc,cu,cuh}: Namespace closing braces must include a trailing comment with the namespace name (e.g., '} // namespace foo').
Prefer const or constexpr variables over #define for constants.
Declare variables that are not modified after initialization as const.
Avoid magic literals in code; except for 0, nullptr, true, false. Use named constants for comparisons and logic.
Use Allman brace style for formatting.
Place the semicolon of an empty for/while loop on a new line.
Bodies of switch/while/do-while/for must be compound statements (brace-delimited), and if/else must always be followed by brace-delimited statements.
Type names (e.g., classes) must be CamelCase starting with an uppercase letter (e.g., FooBar).
Local variables, methods, and namespaces use lowerCamelCase (e.g., localFooBar).
Non-magic-number global variables that are non-static and not in an anonymous namespace must be lowerCamelCase prefixed with 'g' (e.g., gDontUseGlobalFoos).
Non-magic-number globals that are static or in an anonymous namespace use lowerCamelCase prefixed with 's' (e.g., sMutableStaticGlobal).
Locally visible static variables use lowerCamelCase with 's' prefix (e.g., static std::once_flag sFlag).
Private/protected member variables use 'm' prefix with CamelCase (e.g., mNbFooValues). Public members may omit, but 'm' is encouraged for clarity.
Constants (enums, global constants, static constants, and function-scope magic/literal constants) use uppercase SNAKE_CASE with 'k' prefix (e.g., kDIGIT_NUM).
Function-scope constants that are not magic numbers or literals are named like non-constant variables (e.g., bool const pass = a && b).
If macros are necessary, name them in UPPER_SNAKE_CASE (e.g., FOO_VERSION) and prefer constants over #define.
Use LLVM clang-format; wrap lines at a maximum of 120 columns; use '// clang-format off/on' sparingly with justification.
Use smart pointers for heap allocations; prefer unique_ptr for sole ownership, shared_ptr for shared...

Files:

  • cpp/tensorrt_llm/thop/fp8BlockScaleMoe.cpp
**/*.{cpp,cxx,cc,cu,h,hpp,hh,hxx,cuh}

📄 CodeRabbit inference engine (CODING_GUIDELINES.md)

C++ filenames should be lowerCamelCase (first letter lowercase) and must be case-insensitive unique within a compilation target.

Files:

  • cpp/tensorrt_llm/thop/fp8BlockScaleMoe.cpp
**/*.{h,hpp,hh,hxx,cpp,cxx,cc,cu,cuh,py}

📄 CodeRabbit inference engine (CODING_GUIDELINES.md)

Use only spaces, no tabs; indent with 4 spaces.

Files:

  • cpp/tensorrt_llm/thop/fp8BlockScaleMoe.cpp
  • tensorrt_llm/_torch/custom_ops/trtllm_gen_custom_ops.py
  • tests/integration/defs/accuracy/test_llm_api_pytorch.py
**/*.{h,hpp,hh,hxx,cpp,cxx,cc}

📄 CodeRabbit inference engine (CODING_GUIDELINES.md)

**/*.{h,hpp,hh,hxx,cpp,cxx,cc}: Prefer anonymous namespaces over 'static' for internal linkage of functions.
All templates (class/function/member/static) must be instantiated at least once; non-POD classes should have private data members.

Files:

  • cpp/tensorrt_llm/thop/fp8BlockScaleMoe.cpp
**/*.{cpp,cxx,cc,h,hpp,hh,hxx,cu,cuh,py}

📄 CodeRabbit inference engine (CODING_GUIDELINES.md)

Prepend the NVIDIA Apache-2.0 copyright header with current year to the top of all source files (e.g., .cpp, .h, .cu, .py).

Files:

  • cpp/tensorrt_llm/thop/fp8BlockScaleMoe.cpp
  • tensorrt_llm/_torch/custom_ops/trtllm_gen_custom_ops.py
  • tests/integration/defs/accuracy/test_llm_api_pytorch.py
**/*.py

📄 CodeRabbit inference engine (CODING_GUIDELINES.md)

**/*.py: Python code must target Python 3.8+.
Indent Python code with 4 spaces; do not use tabs.
Maintain module namespace when importing; prefer 'from package.subpackage import foo' then 'foo.SomeClass()' instead of importing the class directly.
Python filenames should be snake_case (e.g., some_file.py).
Python classes use PascalCase names.
Functions and methods use snake_case names.
Local variables use snake_case; prefix 'k' for variables that start with a number (e.g., k_99th_percentile).
Global variables use upper SNAKE_CASE prefixed with 'G' (e.g., G_MY_GLOBAL).
Constants use upper SNAKE_CASE (e.g., MY_CONSTANT).
Avoid shadowing variables from an outer scope.
Initialize all externally visible members of a class in the constructor.
Prefer docstrings for interfaces that may be used outside a file; comments for in-function or file-local interfaces.
Use Google-style docstrings for classes and functions (Sphinx-parsable).
Document attributes and variables inline so they render under the class/function docstring.
Avoid reflection when a simpler, explicit approach suffices (e.g., avoid dict(**locals()) patterns).
In try/except, catch the most specific exceptions possible.
For duck-typing try/except, keep the try body minimal and use else for the main logic.

Files:

  • tensorrt_llm/_torch/custom_ops/trtllm_gen_custom_ops.py
  • tests/integration/defs/accuracy/test_llm_api_pytorch.py
🧠 Learnings (4)
📓 Common learnings
Learnt from: sklevtsov-nvidia
PR: NVIDIA/TensorRT-LLM#3294
File: cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu:1198-1209
Timestamp: 2025-08-08T22:03:40.707Z
Learning: In the CUTLASS MoE kernels (cpp/tensorrt_llm/cutlass_extensions), when `layout_info.fusion` is set to `TmaWarpSpecializedGroupedGemmInput::EpilogueFusion::FINALIZE`, the `router_scales` parameter must be non-null by design. The fused finalize kernel epilogue does not perform nullptr checks and requires valid router scales to function correctly. This is an implicit contract that callers must satisfy when enabling the FINALIZE fusion mode.
📚 Learning: 2025-08-08T22:03:40.707Z
Learnt from: sklevtsov-nvidia
PR: NVIDIA/TensorRT-LLM#3294
File: cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu:1198-1209
Timestamp: 2025-08-08T22:03:40.707Z
Learning: In the CUTLASS MoE kernels (cpp/tensorrt_llm/cutlass_extensions), when `layout_info.fusion` is set to `TmaWarpSpecializedGroupedGemmInput::EpilogueFusion::FINALIZE`, the `router_scales` parameter must be non-null by design. The fused finalize kernel epilogue does not perform nullptr checks and requires valid router scales to function correctly. This is an implicit contract that callers must satisfy when enabling the FINALIZE fusion mode.

Applied to files:

  • cpp/tensorrt_llm/thop/fp8BlockScaleMoe.cpp
📚 Learning: 2025-08-14T23:23:27.449Z
Learnt from: djns99
PR: NVIDIA/TensorRT-LLM#6915
File: cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu:4010-4012
Timestamp: 2025-08-14T23:23:27.449Z
Learning: For MOE (Mixture of Experts) code reviews in TensorRT-LLM, avoid repeatedly suggesting finalize fusion validation checks and safety assertions. The user djns99 has indicated these suggestions are repetitive and unwanted across multiple MOE-related changes.

Applied to files:

  • cpp/tensorrt_llm/thop/fp8BlockScaleMoe.cpp
📚 Learning: 2025-08-20T07:43:36.447Z
Learnt from: ChristinaZ
PR: NVIDIA/TensorRT-LLM#7068
File: cpp/tensorrt_llm/kernels/moeTopKFuncs.cuh:169-172
Timestamp: 2025-08-20T07:43:36.447Z
Learning: In TensorRT-LLM MOE kernels, when processing up to 128 experts across 32 threads, each thread handles at most 4 experts (N < 5 constraint), where N represents candidates per thread rather than total system capacity.

Applied to files:

  • cpp/tensorrt_llm/thop/fp8BlockScaleMoe.cpp
🧬 Code graph analysis (3)
cpp/tensorrt_llm/thop/fp8BlockScaleMoe.cpp (3)
cpp/tensorrt_llm/thop/fp4BlockScaleMoe.cpp (1)
  • routing_logits (300-309)
cpp/tensorrt_llm/thop/mxFp4BlockScaleMoe.cpp (2)
  • routing_logits (393-402)
  • routing_logits (450-462)
cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/runner.h (1)
  • top_k (221-221)
tensorrt_llm/_torch/custom_ops/trtllm_gen_custom_ops.py (1)
cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/runner.h (5)
  • n_group (222-222)
  • topk_group (224-224)
  • intermediate_size (226-226)
  • local_expert_offset (227-227)
  • local_num_experts (228-228)
tests/integration/defs/accuracy/test_llm_api_pytorch.py (4)
tensorrt_llm/llmapi/llm_args.py (3)
  • CudaGraphConfig (108-165)
  • MoeConfig (168-196)
  • KvCacheConfig (972-1106)
tensorrt_llm/llmapi/llm.py (1)
  • LLM (1022-1038)
tests/integration/defs/conftest.py (1)
  • llm_models_root (77-82)
tests/integration/defs/accuracy/accuracy_core.py (4)
  • MMLU (276-290)
  • evaluate (147-206)
  • evaluate (712-722)
  • GSM8K (293-308)
🪛 Ruff (0.13.0)
tensorrt_llm/_torch/custom_ops/trtllm_gen_custom_ops.py

601-601: Unused function argument: n_group

(ARG001)


602-602: Unused function argument: topk_group

(ARG001)


603-603: Unused function argument: intermediate_size

(ARG001)


604-604: Unused function argument: local_expert_offset

(ARG001)


605-605: Unused function argument: local_num_experts

(ARG001)


606-606: Unused function argument: routed_scaling_factor

(ARG001)

⏰ Context from checks skipped due to timeout of 90000ms. You can increase the timeout in your CodeRabbit configuration to a maximum of 15 minutes (900000ms). (1)
  • GitHub Check: Pre-commit Check
🔇 Additional comments (2)
tensorrt_llm/_torch/custom_ops/trtllm_gen_custom_ops.py (1)

379-386: LGTM: Optional group and scaling args added to FP8 runner

API matches fp4/mx paths and unblocks None defaults.

cpp/tensorrt_llm/thop/fp8BlockScaleMoe.cpp (1)

95-95: routing_logits pointer type matches API
MoERunnerArgs.routing_logits is declared as void* in runner.h (line 193) and args.routing_logits = routing_logits.data_ptr() correctly supplies a void*; no header changes needed. Downstream kernels should continue casting this void* to the appropriate element type.

@jhaotingc jhaotingc changed the title [None][fix] fix trtllm-gen moe backend on blockwise fp8 ckpt (Qwen3-235B-A22B-FP8) [None][fix] Trtllm-gen moe backend for blockwise fp8 ckpt (Qwen3-235B-A22B-FP8) Sep 19, 2025
@jhaotingc jhaotingc changed the title [None][fix] Trtllm-gen moe backend for blockwise fp8 ckpt (Qwen3-235B-A22B-FP8) [None] @coderabbitai title Sep 19, 2025
@jhaotingc jhaotingc changed the title [None] @coderabbitai title [None][fix] Trtllm-gen moe backend for blockwise fp8 ckpt (Qwen3-235B-A22B-FP8) Sep 19, 2025
@jhaotingc jhaotingc changed the title [None][fix] Trtllm-gen moe backend for blockwise fp8 ckpt (Qwen3-235B-A22B-FP8) [https://nvbugspro.nvidia.com/bug/5518713][fix] Trtllm-gen moe backend for blockwise fp8 ckpt (Qwen3-235B-A22B-FP8) Sep 19, 2025
@jhaotingc jhaotingc changed the title [https://nvbugspro.nvidia.com/bug/5518713][fix] Trtllm-gen moe backend for blockwise fp8 ckpt (Qwen3-235B-A22B-FP8) [https://nvbugs/5518713][fix] Trtllm-gen moe backend for blockwise fp8 ckpt (Qwen3-235B-A22B-FP8) Sep 19, 2025
@jhaotingc
Copy link
Collaborator Author

/bot run --disable-fail-fast

@tensorrt-cicd
Copy link
Collaborator

PR_Github #19382 [ run ] triggered by Bot

@tensorrt-cicd
Copy link
Collaborator

PR_Github #19382 [ run ] completed with state SUCCESS
/LLM/main/L0_MergeRequest_PR pipeline #14558 completed with status: 'SUCCESS'
Pipeline passed with automatic retried tests. Check the rerun report for details.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

3 participants