-
Notifications
You must be signed in to change notification settings - Fork 1.8k
[https://nvbugs/5518713][fix] Trtllm-gen moe backend for blockwise fp8 ckpt (Qwen3-235B-A22B-FP8) #7856
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: main
Are you sure you want to change the base?
Conversation
d62b3c5
to
76f901b
Compare
📝 WalkthroughWalkthroughC++ FP8 MoE changes: accept routing logits as float or bfloat16, enforce 0 < top_k ≤ 8 for Renormalize/RenormalizeNaive, and change routing_logits pointer to a generic void*. Python custom ops: make n_group, topk_group, and routed_scaling_factor Optional in FP4/FP8 runner constructors and public entrypoints. Tests: add an FP8-block-scales integration test for Qwen3-235B. Changes
Sequence Diagram(s)sequenceDiagram
autonumber
participant Py as Python op (fp8_block_scale_moe_runner)
participant Runner as FP8BlockScaleMoERunner
participant Cpp as C++ fp8BlockScaleMoe
participant Kernel as MoE Kernel
Py->>Runner: __init__(..., n_group?, topk_group?, routed_scaling_factor?, routing_method_type)
Note right of Runner: Optional params accepted (may be None)
Py->>Cpp: invoke with tensors (routing_logits, bias, weights, scales, ...)
Cpp->>Cpp: Validate routing_logits dtype ∈ {float, bfloat16}
Cpp->>Cpp: If routing_method ∈ {Renormalize, RenormalizeNaive}<br/>require 0 < top_k ≤ 8
Cpp->>Kernel: run(args with generic routing_logits pointer (void*))
Kernel-->>Cpp: outputs
Cpp-->>Py: outputs
Estimated code review effort🎯 4 (Complex) | ⏱️ ~45 minutes Pre-merge checks and finishing touches❌ Failed checks (2 warnings)
✅ Passed checks (1 passed)
✨ Finishing touches
🧪 Generate unit tests
Thanks for using CodeRabbit! It's free for OSS, and your support helps us grow. If you like it, consider giving us a shout-out. Comment |
Signed-off-by: Jhao-Ting Chen <[email protected]>
…TLLM Signed-off-by: Jhao-Ting Chen <[email protected]>
76f901b
to
5acb38a
Compare
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Actionable comments posted: 1
♻️ Duplicate comments (1)
tensorrt_llm/_torch/custom_ops/trtllm_gen_custom_ops.py (1)
589-608
: Silence fake-path unused parameters (ruff ARG001) per static analysisSame change as above; underscores are harmless and keep the schema intact.
🧹 Nitpick comments (5)
tests/integration/defs/accuracy/test_llm_api_pytorch.py (1)
2862-2893
: Add SM120/121 skip guard for TRTLLM MOE to match NVFP4 testsParity with existing NVFP4 tests avoids CI flakes on unsupported SMs.
Apply this diff inside test_fp8_block_scales immediately after the function signature:
def test_fp8_block_scales(self, tp_size, pp_size, ep_size, attention_dp, cuda_graph, overlap_scheduler, moe_backend): + if moe_backend == "TRTLLM" and (get_sm_version() == 120 or get_sm_version() == 121): + pytest.skip("MOE TRTLLM backend does not support SM version 120 or 121") pytorch_config = dict(cpp/tensorrt_llm/thop/fp8BlockScaleMoe.cpp (2)
41-45
: Fix typo in arch check error textUse “SM100 family” to match isSM100Family().
- TORCH_CHECK(tensorrt_llm::common::isSM100Family(), "Only SM100f is supported by FP8 block scale MOE"); + TORCH_CHECK(tensorrt_llm::common::isSM100Family(), "Only SM100 family is supported by FP8 block scale MOE");
74-76
: Top‑k constraint now enforced for Renormalize/NaiveGood to gate unsupported configs; please mirror this constraint in Python‑side validation or docs to surface earlier to users.
tensorrt_llm/_torch/custom_ops/trtllm_gen_custom_ops.py (2)
545-552
: Expose Optionals in the FP8 op schema: good; align fake path to silence ARG001Update the fake impl’s parameter names to underscore unused args to satisfy ruff without changing schema.
@fp8_block_scale_moe_runner.register_fake def _( - routing_logits: torch.Tensor, - routing_bias: torch.Tensor, + _routing_logits: torch.Tensor, + _routing_bias: torch.Tensor, hidden_states: torch.Tensor, - hidden_states_scale: torch.Tensor, - gemm1_weights: torch.Tensor, - gemm1_weights_scale: torch.Tensor, - gemm2_weights: torch.Tensor, - gemm2_weights_scale: torch.Tensor, - num_experts: int, - top_k: int, - n_group: Optional[int], - topk_group: Optional[int], - intermediate_size: int, - local_expert_offset: int, - local_num_experts: int, - routed_scaling_factor: Optional[float], - routing_method_type: int, + _hidden_states_scale: torch.Tensor, + _gemm1_weights: torch.Tensor, + _gemm1_weights_scale: torch.Tensor, + _gemm2_weights: torch.Tensor, + _gemm2_weights_scale: torch.Tensor, + _num_experts: int, + _top_k: int, + _n_group: Optional[int], + _topk_group: Optional[int], + _intermediate_size: int, + _local_expert_offset: int, + _local_num_experts: int, + _routed_scaling_factor: Optional[float], + _routing_method_type: int, ) -> torch.Tensor:
533-553
: Consider making routing_bias Optional in FP8 inputs to match C++ signatureC++ accepts optional bias; Python FP8 dataclass/op currently requires a Tensor. Making it Optional keeps APIs consistent and avoids surprises if bias is absent.
- routing_bias: torch.Tensor + routing_bias: Optional[torch.Tensor]And in the op schema:
- routing_bias: torch.Tensor, + routing_bias: Optional[torch.Tensor],
📜 Review details
Configuration used: Path: .coderabbit.yaml
Review profile: CHILL
Plan: Pro
📒 Files selected for processing (3)
cpp/tensorrt_llm/thop/fp8BlockScaleMoe.cpp
(4 hunks)tensorrt_llm/_torch/custom_ops/trtllm_gen_custom_ops.py
(3 hunks)tests/integration/defs/accuracy/test_llm_api_pytorch.py
(1 hunks)
🧰 Additional context used
📓 Path-based instructions (6)
**/*.{h,hpp,hh,hxx,cpp,cxx,cc,cu,cuh}
📄 CodeRabbit inference engine (CODING_GUIDELINES.md)
**/*.{h,hpp,hh,hxx,cpp,cxx,cc,cu,cuh}
: Namespace closing braces must include a trailing comment with the namespace name (e.g., '} // namespace foo').
Prefer const or constexpr variables over #define for constants.
Declare variables that are not modified after initialization as const.
Avoid magic literals in code; except for 0, nullptr, true, false. Use named constants for comparisons and logic.
Use Allman brace style for formatting.
Place the semicolon of an empty for/while loop on a new line.
Bodies of switch/while/do-while/for must be compound statements (brace-delimited), and if/else must always be followed by brace-delimited statements.
Type names (e.g., classes) must be CamelCase starting with an uppercase letter (e.g., FooBar).
Local variables, methods, and namespaces use lowerCamelCase (e.g., localFooBar).
Non-magic-number global variables that are non-static and not in an anonymous namespace must be lowerCamelCase prefixed with 'g' (e.g., gDontUseGlobalFoos).
Non-magic-number globals that are static or in an anonymous namespace use lowerCamelCase prefixed with 's' (e.g., sMutableStaticGlobal).
Locally visible static variables use lowerCamelCase with 's' prefix (e.g., static std::once_flag sFlag).
Private/protected member variables use 'm' prefix with CamelCase (e.g., mNbFooValues). Public members may omit, but 'm' is encouraged for clarity.
Constants (enums, global constants, static constants, and function-scope magic/literal constants) use uppercase SNAKE_CASE with 'k' prefix (e.g., kDIGIT_NUM).
Function-scope constants that are not magic numbers or literals are named like non-constant variables (e.g., bool const pass = a && b).
If macros are necessary, name them in UPPER_SNAKE_CASE (e.g., FOO_VERSION) and prefer constants over #define.
Use LLVM clang-format; wrap lines at a maximum of 120 columns; use '// clang-format off/on' sparingly with justification.
Use smart pointers for heap allocations; prefer unique_ptr for sole ownership, shared_ptr for shared...
Files:
cpp/tensorrt_llm/thop/fp8BlockScaleMoe.cpp
**/*.{cpp,cxx,cc,cu,h,hpp,hh,hxx,cuh}
📄 CodeRabbit inference engine (CODING_GUIDELINES.md)
C++ filenames should be lowerCamelCase (first letter lowercase) and must be case-insensitive unique within a compilation target.
Files:
cpp/tensorrt_llm/thop/fp8BlockScaleMoe.cpp
**/*.{h,hpp,hh,hxx,cpp,cxx,cc,cu,cuh,py}
📄 CodeRabbit inference engine (CODING_GUIDELINES.md)
Use only spaces, no tabs; indent with 4 spaces.
Files:
cpp/tensorrt_llm/thop/fp8BlockScaleMoe.cpp
tensorrt_llm/_torch/custom_ops/trtllm_gen_custom_ops.py
tests/integration/defs/accuracy/test_llm_api_pytorch.py
**/*.{h,hpp,hh,hxx,cpp,cxx,cc}
📄 CodeRabbit inference engine (CODING_GUIDELINES.md)
**/*.{h,hpp,hh,hxx,cpp,cxx,cc}
: Prefer anonymous namespaces over 'static' for internal linkage of functions.
All templates (class/function/member/static) must be instantiated at least once; non-POD classes should have private data members.
Files:
cpp/tensorrt_llm/thop/fp8BlockScaleMoe.cpp
**/*.{cpp,cxx,cc,h,hpp,hh,hxx,cu,cuh,py}
📄 CodeRabbit inference engine (CODING_GUIDELINES.md)
Prepend the NVIDIA Apache-2.0 copyright header with current year to the top of all source files (e.g., .cpp, .h, .cu, .py).
Files:
cpp/tensorrt_llm/thop/fp8BlockScaleMoe.cpp
tensorrt_llm/_torch/custom_ops/trtllm_gen_custom_ops.py
tests/integration/defs/accuracy/test_llm_api_pytorch.py
**/*.py
📄 CodeRabbit inference engine (CODING_GUIDELINES.md)
**/*.py
: Python code must target Python 3.8+.
Indent Python code with 4 spaces; do not use tabs.
Maintain module namespace when importing; prefer 'from package.subpackage import foo' then 'foo.SomeClass()' instead of importing the class directly.
Python filenames should be snake_case (e.g., some_file.py).
Python classes use PascalCase names.
Functions and methods use snake_case names.
Local variables use snake_case; prefix 'k' for variables that start with a number (e.g., k_99th_percentile).
Global variables use upper SNAKE_CASE prefixed with 'G' (e.g., G_MY_GLOBAL).
Constants use upper SNAKE_CASE (e.g., MY_CONSTANT).
Avoid shadowing variables from an outer scope.
Initialize all externally visible members of a class in the constructor.
Prefer docstrings for interfaces that may be used outside a file; comments for in-function or file-local interfaces.
Use Google-style docstrings for classes and functions (Sphinx-parsable).
Document attributes and variables inline so they render under the class/function docstring.
Avoid reflection when a simpler, explicit approach suffices (e.g., avoid dict(**locals()) patterns).
In try/except, catch the most specific exceptions possible.
For duck-typing try/except, keep the try body minimal and use else for the main logic.
Files:
tensorrt_llm/_torch/custom_ops/trtllm_gen_custom_ops.py
tests/integration/defs/accuracy/test_llm_api_pytorch.py
🧠 Learnings (4)
📓 Common learnings
Learnt from: sklevtsov-nvidia
PR: NVIDIA/TensorRT-LLM#3294
File: cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu:1198-1209
Timestamp: 2025-08-08T22:03:40.707Z
Learning: In the CUTLASS MoE kernels (cpp/tensorrt_llm/cutlass_extensions), when `layout_info.fusion` is set to `TmaWarpSpecializedGroupedGemmInput::EpilogueFusion::FINALIZE`, the `router_scales` parameter must be non-null by design. The fused finalize kernel epilogue does not perform nullptr checks and requires valid router scales to function correctly. This is an implicit contract that callers must satisfy when enabling the FINALIZE fusion mode.
📚 Learning: 2025-08-08T22:03:40.707Z
Learnt from: sklevtsov-nvidia
PR: NVIDIA/TensorRT-LLM#3294
File: cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu:1198-1209
Timestamp: 2025-08-08T22:03:40.707Z
Learning: In the CUTLASS MoE kernels (cpp/tensorrt_llm/cutlass_extensions), when `layout_info.fusion` is set to `TmaWarpSpecializedGroupedGemmInput::EpilogueFusion::FINALIZE`, the `router_scales` parameter must be non-null by design. The fused finalize kernel epilogue does not perform nullptr checks and requires valid router scales to function correctly. This is an implicit contract that callers must satisfy when enabling the FINALIZE fusion mode.
Applied to files:
cpp/tensorrt_llm/thop/fp8BlockScaleMoe.cpp
📚 Learning: 2025-08-14T23:23:27.449Z
Learnt from: djns99
PR: NVIDIA/TensorRT-LLM#6915
File: cpp/tensorrt_llm/kernels/cutlass_kernels/moe_gemm/moe_kernels.cu:4010-4012
Timestamp: 2025-08-14T23:23:27.449Z
Learning: For MOE (Mixture of Experts) code reviews in TensorRT-LLM, avoid repeatedly suggesting finalize fusion validation checks and safety assertions. The user djns99 has indicated these suggestions are repetitive and unwanted across multiple MOE-related changes.
Applied to files:
cpp/tensorrt_llm/thop/fp8BlockScaleMoe.cpp
📚 Learning: 2025-08-20T07:43:36.447Z
Learnt from: ChristinaZ
PR: NVIDIA/TensorRT-LLM#7068
File: cpp/tensorrt_llm/kernels/moeTopKFuncs.cuh:169-172
Timestamp: 2025-08-20T07:43:36.447Z
Learning: In TensorRT-LLM MOE kernels, when processing up to 128 experts across 32 threads, each thread handles at most 4 experts (N < 5 constraint), where N represents candidates per thread rather than total system capacity.
Applied to files:
cpp/tensorrt_llm/thop/fp8BlockScaleMoe.cpp
🧬 Code graph analysis (3)
cpp/tensorrt_llm/thop/fp8BlockScaleMoe.cpp (3)
cpp/tensorrt_llm/thop/fp4BlockScaleMoe.cpp (1)
routing_logits
(300-309)cpp/tensorrt_llm/thop/mxFp4BlockScaleMoe.cpp (2)
routing_logits
(393-402)routing_logits
(450-462)cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/runner.h (1)
top_k
(221-221)
tensorrt_llm/_torch/custom_ops/trtllm_gen_custom_ops.py (1)
cpp/tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/runner.h (5)
n_group
(222-222)topk_group
(224-224)intermediate_size
(226-226)local_expert_offset
(227-227)local_num_experts
(228-228)
tests/integration/defs/accuracy/test_llm_api_pytorch.py (4)
tensorrt_llm/llmapi/llm_args.py (3)
CudaGraphConfig
(108-165)MoeConfig
(168-196)KvCacheConfig
(972-1106)tensorrt_llm/llmapi/llm.py (1)
LLM
(1022-1038)tests/integration/defs/conftest.py (1)
llm_models_root
(77-82)tests/integration/defs/accuracy/accuracy_core.py (4)
MMLU
(276-290)evaluate
(147-206)evaluate
(712-722)GSM8K
(293-308)
🪛 Ruff (0.13.0)
tensorrt_llm/_torch/custom_ops/trtllm_gen_custom_ops.py
601-601: Unused function argument: n_group
(ARG001)
602-602: Unused function argument: topk_group
(ARG001)
603-603: Unused function argument: intermediate_size
(ARG001)
604-604: Unused function argument: local_expert_offset
(ARG001)
605-605: Unused function argument: local_num_experts
(ARG001)
606-606: Unused function argument: routed_scaling_factor
(ARG001)
⏰ Context from checks skipped due to timeout of 90000ms. You can increase the timeout in your CodeRabbit configuration to a maximum of 15 minutes (900000ms). (1)
- GitHub Check: Pre-commit Check
🔇 Additional comments (2)
tensorrt_llm/_torch/custom_ops/trtllm_gen_custom_ops.py (1)
379-386
: LGTM: Optional group and scaling args added to FP8 runnerAPI matches fp4/mx paths and unblocks None defaults.
cpp/tensorrt_llm/thop/fp8BlockScaleMoe.cpp (1)
95-95
: routing_logits pointer type matches API
MoERunnerArgs.routing_logits is declared as void* in runner.h (line 193) and args.routing_logits = routing_logits.data_ptr() correctly supplies a void*; no header changes needed. Downstream kernels should continue casting this void* to the appropriate element type.
/bot run --disable-fail-fast |
PR_Github #19382 [ run ] triggered by Bot |
PR_Github #19382 [ run ] completed with state |
Summary by CodeRabbit
New Features
Improvements
Tests
Description
Test Coverage
PR Checklist
Please review the following before submitting your PR:
PR description clearly explains what and why. If using CodeRabbit's summary, please make sure it makes sense.
PR Follows TRT-LLM CODING GUIDELINES to the best of your knowledge.
Test cases are provided for new code paths (see test instructions)
Any new dependencies have been scanned for license and vulnerabilities
CODEOWNERS updated if ownership changes
Documentation updated as needed
The reviewers assigned automatically/manually are appropriate for the PR.
Please check this after reviewing the above items as appropriate for this PR.
GitHub Bot Help
/bot [-h] ['run', 'kill', 'skip', 'reuse-pipeline'] ...
Provide a user friendly way for developers to interact with a Jenkins server.
Run
/bot [-h|--help]
to print this help message.See details below for each supported subcommand.
run [--reuse-test (optional)pipeline-id --disable-fail-fast --skip-test --stage-list "A10-PyTorch-1, xxx" --gpu-type "A30, H100_PCIe" --test-backend "pytorch, cpp" --add-multi-gpu-test --only-multi-gpu-test --disable-multi-gpu-test --post-merge --extra-stage "H100_PCIe-TensorRT-Post-Merge-1, xxx" --detailed-log --debug(experimental)]
Launch build/test pipelines. All previously running jobs will be killed.
--reuse-test (optional)pipeline-id
(OPTIONAL) : Allow the new pipeline to reuse build artifacts and skip successful test stages from a specified pipeline or the last pipeline if no pipeline-id is indicated. If the Git commit ID has changed, this option will be always ignored. The DEFAULT behavior of the bot is to reuse build artifacts and successful test results from the last pipeline.--disable-reuse-test
(OPTIONAL) : Explicitly prevent the pipeline from reusing build artifacts and skipping successful test stages from a previous pipeline. Ensure that all builds and tests are run regardless of previous successes.--disable-fail-fast
(OPTIONAL) : Disable fail fast on build/tests/infra failures.--skip-test
(OPTIONAL) : Skip all test stages, but still run build stages, package stages and sanity check stages. Note: Does NOT update GitHub check status.--stage-list "A10-PyTorch-1, xxx"
(OPTIONAL) : Only run the specified test stages. Examples: "A10-PyTorch-1, xxx". Note: Does NOT update GitHub check status.--gpu-type "A30, H100_PCIe"
(OPTIONAL) : Only run the test stages on the specified GPU types. Examples: "A30, H100_PCIe". Note: Does NOT update GitHub check status.--test-backend "pytorch, cpp"
(OPTIONAL) : Skip test stages which don't match the specified backends. Only support [pytorch, cpp, tensorrt, triton]. Examples: "pytorch, cpp" (does not run test stages with tensorrt or triton backend). Note: Does NOT update GitHub pipeline status.--only-multi-gpu-test
(OPTIONAL) : Only run the multi-GPU tests. Note: Does NOT update GitHub check status.--disable-multi-gpu-test
(OPTIONAL) : Disable the multi-GPU tests. Note: Does NOT update GitHub check status.--add-multi-gpu-test
(OPTIONAL) : Force run the multi-GPU tests in addition to running L0 pre-merge pipeline.--post-merge
(OPTIONAL) : Run the L0 post-merge pipeline instead of the ordinary L0 pre-merge pipeline.--extra-stage "H100_PCIe-TensorRT-Post-Merge-1, xxx"
(OPTIONAL) : Run the ordinary L0 pre-merge pipeline and specified test stages. Examples: --extra-stage "H100_PCIe-TensorRT-Post-Merge-1, xxx".--detailed-log
(OPTIONAL) : Enable flushing out all logs to the Jenkins console. This will significantly increase the log volume and may slow down the job.--debug
(OPTIONAL) : Experimental feature. Enable access to the CI container for debugging purpose. Note: Specify exactly one stage in thestage-list
parameter to access the appropriate container environment. Note: Does NOT update GitHub check status.For guidance on mapping tests to stage names, see
docs/source/reference/ci-overview.md
and the
scripts/test_to_stage_mapping.py
helper.kill
kill
Kill all running builds associated with pull request.
skip
skip --comment COMMENT
Skip testing for latest commit on pull request.
--comment "Reason for skipping build/test"
is required. IMPORTANT NOTE: This is dangerous since lack of user care and validation can cause top of tree to break.reuse-pipeline
reuse-pipeline
Reuse a previous pipeline to validate current commit. This action will also kill all currently running builds associated with the pull request. IMPORTANT NOTE: This is dangerous since lack of user care and validation can cause top of tree to break.