Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 0 additions & 4 deletions examples/hopper_matmul/matmul_v1.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,10 +9,6 @@
from tilus import float16, float32, int32, uint32
from tilus.utils import benchmark_func, cdiv

tilus.option.cache_dir("./cache")
tilus.option.debug.dump_ir(True)
torch.set_printoptions(precision=3, sci_mode=False, linewidth=160)


@tilus.autotune(
"block_m, block_n", [(64, 128), (128, 128), (128, 256), (256, 128), (256, 256)]
Expand Down
154 changes: 154 additions & 0 deletions examples/hopper_matmul/matmul_v2.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,154 @@
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0

import math

import pandas
import tilus
import torch
from tilus import float16, float32, int32, uint32
from tilus.utils import benchmark_func, cdiv


@tilus.autotune("num_stages", [2, 3, 4])
@tilus.autotune(
"block_m, block_n", [(64, 128), (128, 128), (128, 256), (256, 128), (256, 256)]
)
@tilus.autotune("block_k", [16, 32, 64])
class MatmulWGMMAV2(tilus.Script):
def __init__(
self,
num_stages,
block_m,
block_n,
block_k,
):
super().__init__()
self.num_stages = num_stages
self.block_m = block_m
self.block_n = block_n
self.block_k = block_k

def __call__(
self,
m_size: int32,
n_size: int,
k_size: int,
a_ptr: ~float16,
b_ptr: ~float16,
c_ptr: ~float16,
):
self.attrs.blocks = [
cdiv(m_size, self.block_m),
cdiv(n_size, self.block_n),
]
self.attrs.warps = 4

block_m, block_n, block_k = self.block_m, self.block_n, self.block_k
offset_m: int32 = block_m * self.blockIdx.x
offset_n: int32 = block_n * self.blockIdx.y

ga = self.global_view(a_ptr, dtype=float16, shape=[m_size, k_size])
gb = self.global_view(b_ptr, dtype=float16, shape=[n_size, k_size])
sa = self.shared_tensor(dtype=float16, shape=[self.num_stages, block_m, block_k])
sb = self.shared_tensor(dtype=float16, shape=[self.num_stages, block_n, block_k])
acc = self.register_tensor(dtype=float32, shape=[block_m, block_n], init=0.0)

tma_barriers = self.mbarrier.alloc(count=[2 for _ in range(self.num_stages)])
phase = self.register_tensor(dtype=uint32, shape=[self.num_stages], init=0)

num_iters: int32 = cdiv(k_size, block_k)
max_num_stages: int32 = min(num_iters, self.num_stages)

for stage in range(max_num_stages):
offset_k = stage * self.block_k
with self.single_thread():
self.tma.global_to_shared(
src=ga,
dst=sa[stage],
offsets=[offset_m, offset_k],
mbarrier=tma_barriers[stage],
)
self.tma.global_to_shared(
src=gb,
dst=sb[stage],
offsets=[offset_n, offset_k],
mbarrier=tma_barriers[stage],
)

for iter in range(num_iters):
stage = iter % self.num_stages
self.mbarrier.wait(tma_barriers[stage], phase=phase[stage])
self.sync()

self.wgmma.fence()
self.wgmma.mma(sa[stage], sb[stage].transpose(), acc)
self.wgmma.commit_group()
self.wgmma.wait_group(0)
phase[stage] ^= 1

preload_iter = iter + self.num_stages
if preload_iter < num_iters:
preload_stage = preload_iter % self.num_stages
offset_k = preload_iter * self.block_k
with self.single_thread():
self.tma.global_to_shared(
src=ga,
dst=sa[preload_stage],
offsets=[offset_m, offset_k],
mbarrier=tma_barriers[preload_stage],
)
self.tma.global_to_shared(
src=gb,
dst=sb[preload_stage],
offsets=[offset_n, offset_k],
mbarrier=tma_barriers[preload_stage],
)
self.sync()

self.free_shared(sa)
self.free_shared(sb)

casted_acc = self.cast(acc, dtype=float16)
gc = self.global_view(c_ptr, dtype=float16, shape=[m_size, n_size])
self.store_global(gc, casted_acc, offsets=[offset_m, offset_n])


def main():
headers = ["m", "n", "k", "name", "latency (ms)", "tflops"]
workloads = [
[4096, 4096, 4096],
# [128, 48, 16],
]

rows = []
for m, n, k in workloads:
matmul = MatmulWGMMAV2()

a = (torch.rand(m, k, dtype=torch.float16).cuda() - 0.5) / math.sqrt(k)
b = (torch.rand(n, k, dtype=torch.float16).cuda() - 0.5) / math.sqrt(k)
c_actual = torch.empty(m, n, dtype=torch.float16).cuda()
c_expect = a @ b.T
matmul(m, n, k, a, b, c_actual)
torch.cuda.synchronize()

# check correctness
torch.testing.assert_close(c_expect, c_actual)

# benchmark
for name, func in [
("torch", lambda: torch.matmul(a, b.T, out=c_expect)),
("tilus", lambda: matmul(m, n, k, a, b, c_actual)),
]:
latency = benchmark_func(func, warmup=5, repeat=20)
tflops = 2 * m * n * k / latency * 1e-9
rows.append([m, n, k, name, latency, tflops])

df = pandas.DataFrame(rows, columns=headers)
print(df)


# %%

if __name__ == "__main__":
main()
1 change: 1 addition & 0 deletions tests/examples/test_examples.py
Original file line number Diff line number Diff line change
Expand Up @@ -57,6 +57,7 @@
# hopper matmul example (SM 9.0)
("hopper_matmul", "matmul_v0.py", nvgpu_sm90),
("hopper_matmul", "matmul_v1.py", nvgpu_sm90),
("hopper_matmul", "matmul_v2.py", nvgpu_sm90),
# quantization examples (SM 8.0+)
("quantization", "matmul_a16wx.py", nvgpu_sm80),
# flash attention decode examples (SM 8.0+)
Expand Down
Loading