Skip to content

Commit

Permalink
upd/multi-turn editing script
Browse files Browse the repository at this point in the history
  • Loading branch information
drogozhang committed Aug 25, 2023
1 parent ecd0b07 commit ef17546
Showing 1 changed file with 209 additions and 0 deletions.
209 changes: 209 additions & 0 deletions edit_cli_single_multi_turn.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,209 @@
from __future__ import annotations

import math
import os.path
import random
import shutil
import sys
from argparse import ArgumentParser
from tqdm import tqdm

import einops
import k_diffusion as K
import numpy as np
import torch
import torch.nn as nn
from einops import rearrange
from omegaconf import OmegaConf
from PIL import Image, ImageOps
from torch import autocast
import json
import os
sys.path.append("./stable_diffusion")

from stable_diffusion.ldm.util import instantiate_from_config


class CFGDenoiser(nn.Module):
def __init__(self, model):
super().__init__()
self.inner_model = model

def forward(self, z, sigma, cond, uncond, text_cfg_scale, image_cfg_scale):
cfg_z = einops.repeat(z, "1 ... -> n ...", n=3)
cfg_sigma = einops.repeat(sigma, "1 ... -> n ...", n=3)
cfg_cond = {
"c_crossattn": [torch.cat([cond["c_crossattn"][0], uncond["c_crossattn"][0], uncond["c_crossattn"][0]])],
"c_concat": [torch.cat([cond["c_concat"][0], cond["c_concat"][0], uncond["c_concat"][0]])],
}
out_cond, out_img_cond, out_uncond = self.inner_model(cfg_z, cfg_sigma, cond=cfg_cond).chunk(3)
return out_uncond + text_cfg_scale * (out_cond - out_img_cond) + image_cfg_scale * (out_img_cond - out_uncond)


def load_model_from_config(config, ckpt, vae_ckpt=None, verbose=False):
print(f"Loading model from {ckpt}")
print(ckpt)
pl_sd = torch.load(ckpt, map_location="cpu")
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
sd = pl_sd["state_dict"]
if vae_ckpt is not None:
print(f"Loading VAE from {vae_ckpt}")
vae_sd = torch.load(vae_ckpt, map_location="cpu")["state_dict"]
sd = {
k: vae_sd[k[len("first_s tage_model.") :]] if k.startswith("first_stage_model.") else v
for k, v in sd.items()
}
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False)
if len(m) > 0 and verbose:
print("missing keys:")
print(m)
if len(u) > 0 and verbose:
print("unexpected keys:")
print(u)
return model


def main():
parser = ArgumentParser()
parser.add_argument("--resolution", default=512, type=int)
parser.add_argument("--steps", default=100, type=int)
parser.add_argument("--config", default="configs/generate.yaml", type=str) # default 2.1
parser.add_argument("--ckpt", default="checkpoints/MagicBrush-epoch-52-step-4999.ckpt", type=str) # default 2.1
parser.add_argument("--vae-ckpt", default=None, type=str)
parser.add_argument("--input_path", required=True, type=str, default='./dev/images')
parser.add_argument("--output_path", required=True, type=str, default='./DevMagicBrushOutput')
parser.add_argument("--cfg-text", default=7.5, type=float)
parser.add_argument("--cfg-image", default=1.5, type=float)
parser.add_argument("--debug", action="store_true")
parser.add_argument("--skip_iter", action="store_true")

parser.add_argument("--seed", type=int)
args = parser.parse_args()

# with open('your_input_path_dir/series_instructions.json') as fp:
# with open(os.path.join(args.input_path + '-meta', 'series_instructions.json')) as fp:
with open(os.path.join(args.input_path, '..', 'edit_sessions.json')) as fp:
data_json = json.load(fp)
if not os.path.exists(args.output_path):
os.makedirs(args.output_path)
print(1)
config = OmegaConf.load(args.config)
model = load_model_from_config(config, args.ckpt, args.vae_ckpt)
model.eval().cuda()
model_wrap = K.external.CompVisDenoiser(model)
model_wrap_cfg = CFGDenoiser(model_wrap)
null_token = model.get_learned_conditioning([""])

seed = random.randint(0, 100000) if args.seed is None else args.seed



def edit_image(input_path, output_path, edict_instruction):
input_image = Image.open(input_path).convert("RGB")
width, height = input_image.size
factor = args.resolution / max(width, height)
factor = math.ceil(min(width, height) * factor / 64) * 64 / min(width, height)
width = int((width * factor) // 64) * 64
height = int((height * factor) // 64) * 64
input_image = ImageOps.fit(input_image, (width, height), method=Image.Resampling.LANCZOS)

with torch.no_grad(), autocast("cuda"), model.ema_scope():
cond = {}
cond["c_crossattn"] = [model.get_learned_conditioning([edict_instruction])]
input_image = 2 * torch.tensor(np.array(input_image)).float() / 255 - 1
input_image = rearrange(input_image, "h w c -> 1 c h w").to(model.device)
cond["c_concat"] = [model.encode_first_stage(input_image).mode()]

uncond = {}
uncond["c_crossattn"] = [null_token]
uncond["c_concat"] = [torch.zeros_like(cond["c_concat"][0])]

sigmas = model_wrap.get_sigmas(args.steps)

extra_args = {
"cond": cond,
"uncond": uncond,
"text_cfg_scale": args.cfg_text,
"image_cfg_scale": args.cfg_image,
}
torch.manual_seed(seed)
z = torch.randn_like(cond["c_concat"][0]) * sigmas[0]
z = K.sampling.sample_euler_ancestral(model_wrap_cfg, z, sigmas, extra_args=extra_args)
x = model.decode_first_stage(z)
x = torch.clamp((x + 1.0) / 2.0, min=0.0, max=1.0)
x = 255.0 * rearrange(x, "1 c h w -> h w c")
edited_image = Image.fromarray(x.type(torch.uint8).cpu().numpy())
edited_image.save(output_path)

if args.debug:
data_json = data_json[:3]

# iterative edit
if args.skip_iter:
print("Skip Iterative (Mutli-Turn) Editing......")
else:
print("Iterative (Mutli-Turn) Editing......")
# for idx, datas in enumerate(data_json):
for image_id, datas in tqdm(data_json.items()):
for turn_id, data in enumerate(datas):
print("data", data)
image_name = data['input']
image_dir = image_name.split('-')[0]
# 139306-input.png
# 139306-output1.png
# image_dir is 139306
if turn_id == 0: # first enter
image_path = os.path.join(args.input_path, image_dir, image_name)
else:
image_path = save_output_img_path
edit_instruction = data['instruction']
save_output_dir_path = os.path.join(args.output_path, image_dir)
if not os.path.exists(save_output_dir_path):
os.makedirs(save_output_dir_path)
if turn_id == 0:
save_output_img_path = os.path.join(save_output_dir_path, image_dir+'_1.png')
else:
save_output_img_path = os.path.join(save_output_dir_path, image_dir+'_iter_' +str(turn_id + 1)+'.png')

if os.path.exists(save_output_img_path):
print('already generated, skip')
continue
print('image_name', image_name)
print('image_path', image_path)
print('save_output_img_path', save_output_img_path)
print('edit_instruction', edit_instruction)
edit_image(image_path, save_output_img_path, edit_instruction)

print("Independent (Single-Turn) Editing......")
# for idx, datas in enumerate(data_json):
for image_id, datas in tqdm(data_json.items()):
for turn_id, data in enumerate(datas):
image_name = data['input']
image_dir = image_name.split('-')[0]
image_path = os.path.join(args.input_path, image_dir, image_name)
edit_instruction = data['instruction']
save_outut_dir_path = os.path.join(args.output_path, image_dir)
if not os.path.exists(save_outut_dir_path):
os.makedirs(save_outut_dir_path)
if turn_id == 0:
save_output_img_path = os.path.join(save_outut_dir_path, image_dir+'_1.png')
# if os.path.exists(save_output_img_path): # already generated in iterative editing
# print('already generated in iterative editing')
# continue
else:
save_output_img_path = os.path.join(save_outut_dir_path, image_dir+'_inde_' +str(turn_id + 1)+'.png')
if os.path.exists(save_output_img_path): # already generated in iterative (multi-turn) editing.
print('already generated, skip')
continue
print('image_name', image_name)
print('image_path', image_path)
print('save_output_img_path', save_output_img_path)
print('edit_instruction', edit_instruction)
edit_image(image_path, save_output_img_path, edit_instruction)


if __name__ == "__main__":
main()

0 comments on commit ef17546

Please sign in to comment.