-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #1 from OnnoKampman/corrections
Corrections
- Loading branch information
Showing
39 changed files
with
1,986 additions
and
918 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,4 +1,5 @@ | ||
.DS_Store | ||
.vscode/ | ||
|
||
## Core latex/pdflatex auxiliary files: | ||
*.aux | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,333 @@ | ||
\chapter{More benchmarking results}\label{appendix:more-benchmarking-results} | ||
%%%%% | ||
|
||
%% | ||
\section{Simulations: Optimal learned window lengths}\label{appendix:sim-optimal-window-lengths} | ||
%% | ||
|
||
|
||
\begin{figure}[ht] | ||
\centering | ||
\includegraphics[width=\textwidth]{fig/sim/d2/N0120_T0200/no_noise/SW_cross_validated_optimal_window_lengths} | ||
\caption{ | ||
Simulations benchmark optimal cross-validated window lengths learned from bivariate ($D = 2$) noiseless data for $N = 120$. | ||
Each dot represents one of $T = 200$ trials. | ||
}\label{fig:sim-optimal-window-lengths-N120} | ||
\end{figure} | ||
|
||
|
||
\begin{figure}[ht] | ||
\centering | ||
\includegraphics[width=\textwidth]{fig/sim/d2/N0200_T0200/no_noise/SW_cross_validated_optimal_window_lengths} | ||
\caption{ | ||
Simulations benchmark optimal cross-validated window lengths learned from bivariate ($D = 2$) noiseless data for $N = 200$. | ||
Each dot represents one of $T = 200$ trials. | ||
}\label{fig:sim-optimal-window-lengths-N200} | ||
\end{figure} | ||
|
||
|
||
\begin{figure}[ht] | ||
\centering | ||
\includegraphics[width=\textwidth]{fig/sim/d2/N1200_T0200/no_noise/SW_cross_validated_optimal_window_lengths} | ||
\caption{ | ||
Simulations benchmark optimal cross-validated window lengths learned from bivariate ($D = 2$) noiseless data for $N = 1200$. | ||
Each dot represents one of $T = 200$ trials. | ||
}\label{fig:sim-optimal-window-lengths-N1200} | ||
\end{figure} | ||
|
||
|
||
%% | ||
\clearpage | ||
\section{Simulations: Learned kernel lengthscales}\label{appendix:sim-kernel-lengthscales} | ||
%% | ||
|
||
|
||
\begin{figure}[ht] | ||
\centering | ||
\includegraphics[width=\textwidth]{fig/sim/d2/N0120_T0200/no_noise/SVWP_kernel_lengthscales} | ||
\caption{ | ||
Simulations benchmark SVWP kernel lengthscales $l$ learned from bivariate ($D = 2$) noiseless data for $N = 120$. | ||
Each dot represents one of $T = 200$ trials. | ||
}\label{fig:sim-learned-kernel-lengthscales-N120} | ||
\end{figure} | ||
|
||
|
||
\begin{figure}[ht] | ||
\centering | ||
\includegraphics[width=\textwidth]{fig/sim/d2/N0200_T0200/no_noise/SVWP_kernel_lengthscales} | ||
\caption{ | ||
Simulations benchmark SVWP kernel lengthscales $l$ learned from bivariate ($D = 2$) noiseless data for $N = 200$. | ||
Each dot represents one of $T = 200$ trials. | ||
}\label{fig:sim-learned-kernel-lengthscales-N200} | ||
\end{figure} | ||
|
||
|
||
\begin{figure}[ht] | ||
\centering | ||
\includegraphics[width=\textwidth]{fig/sim/d2/N1200_T0200/no_noise/SVWP_kernel_lengthscales} | ||
\caption{ | ||
Simulations benchmark SVWP kernel lengthscales $l$ learned from bivariate ($D = 2$) noiseless data for $N = 1200$. | ||
Each dot represents one of $T = 200$ trials. | ||
}\label{fig:sim-learned-kernel-lengthscales-N1200} | ||
\end{figure} | ||
|
||
|
||
%% | ||
\clearpage | ||
\section{Simulations: Impact of noise}\label{ch:appendix-impact-of-noise} | ||
%% | ||
|
||
%% | ||
\subsection{Bivariate TVFC estimates}\label{ch:appendix-d2-impact-of-noise} | ||
%% | ||
|
||
|
||
\begin{figure}[h] | ||
\centering | ||
\includegraphics[width=\textwidth]{fig/sim/d2/N0400_T0200/no_noise/all_covs_types_correlations} | ||
\caption{ | ||
Model TVFC predictions on bivariate data for $N = 400$ data points. | ||
No noise added. | ||
}\label{fig:results-all-covariance-structures-tvfc-predictions} | ||
\end{figure} | ||
|
||
|
||
\begin{figure}[h] | ||
\centering | ||
\includegraphics[width=\textwidth]{fig/sim/d2/N0400_T0200/HCP_noise_snr_6/all_covs_types_correlations} | ||
\caption{ | ||
Model TVFC predictions on bivariate data for $N=400$ data points. | ||
HCP noise with SNR of 6 added. | ||
}\label{fig:results-all-covariance-structures-tvfc-predictions-snr-6} | ||
\end{figure} | ||
|
||
|
||
\begin{figure}[h] | ||
\centering | ||
\includegraphics[width=\textwidth]{fig/sim/d2/N0400_T0200/HCP_noise_snr_2/all_covs_types_correlations} | ||
\caption{ | ||
Model TVFC predictions on bivariate data for $N = 400$ data points. | ||
HCP noise with SNR of 2 added. | ||
}\label{fig:results-all-covariance-structures-tvfc-predictions-snr-2} | ||
\end{figure} | ||
|
||
|
||
\begin{figure}[h] | ||
\centering | ||
\includegraphics[width=\textwidth]{fig/sim/d2/N0400_T0200/HCP_noise_snr_1/all_covs_types_correlations} | ||
\caption{ | ||
Model TVFC predictions on bivariate data for $N = 400$ data points. | ||
HCP noise with SNR of 1 added. | ||
}\label{fig:results-all-covariance-structures-tvfc-predictions-snr-1} | ||
\end{figure} | ||
|
||
|
||
%% | ||
\clearpage | ||
\subsection{Bivariate quantitative results} | ||
%% | ||
|
||
|
||
\begin{figure}[ht] | ||
\centering | ||
\includegraphics[width=0.84\textwidth]{fig/sim/d2/N0400_T0200/no_noise/correlation_RMSE} | ||
\caption{ | ||
Performance of models on all bivariate synthetic covariance structures without noise for $N = 400$. | ||
Means and standard deviations are shown across $T = 200$ trials. | ||
}\label{fig:results-sim-d2-400-all-correlation-RMSE-no-noise} | ||
\end{figure} | ||
|
||
|
||
\begin{figure}[ht] | ||
\centering | ||
\includegraphics[width=0.84\textwidth]{fig/sim/d2/N0400_T0200/HCP_noise_snr_6/correlation_RMSE} | ||
\caption{ | ||
Performance of models on all bivariate synthetic covariance structures with HCP noise with SNR of 6 added for $N = 400$. | ||
Means and standard deviations are shown across $T = 200$ trials. | ||
}\label{fig:results-sim-d2-400-all-correlation-RMSE-snr-6} | ||
\end{figure} | ||
|
||
|
||
\begin{figure}[ht] | ||
\centering | ||
\includegraphics[width=0.84\textwidth]{fig/sim/d2/N0400_T0200/HCP_noise_snr_2/correlation_RMSE} | ||
\caption{ | ||
Performance of models on all bivariate synthetic covariance structures with HCP noise with SNR of 2 added for $N = 400$. | ||
Means and standard deviations are shown across $T = 200$ trials. | ||
}\label{fig:results-sim-d2-400-all-correlation-RMSE-snr-2} | ||
\end{figure} | ||
|
||
|
||
\begin{figure}[ht] | ||
\centering | ||
\includegraphics[width=0.84\textwidth]{fig/sim/d2/N0400_T0200/HCP_noise_snr_1/correlation_RMSE} | ||
\caption{ | ||
Performance of models on all bivariate synthetic covariance structures with HCP noise with SNR of 1 added for $N = 400$. | ||
Means and standard deviations are shown across $T = 200$ trials. | ||
}\label{fig:results-sim-d2-400-all-correlation-RMSE-snr-1} | ||
\end{figure} | ||
|
||
|
||
%% | ||
\clearpage | ||
\subsection{Trivariate TVFC estimates}\label{ch:appendix-d3d-impact-of-noise} | ||
%% | ||
|
||
|
||
\begin{figure}[h] | ||
\centering | ||
\includegraphics[width=\textwidth]{fig/sim/d3d/N0400_T0003/no_noise/periodic_1_correlations} | ||
\caption{ | ||
Model TVFC estimates on dense trivariate data for $N = 400$ data points. | ||
No noise added. | ||
}\label{fig:results-d3d-periodic-1-tvfc-predictions-no-noise} | ||
\end{figure} | ||
|
||
|
||
\begin{figure}[h] | ||
\centering | ||
\includegraphics[width=\textwidth]{fig/sim/d3d/N0400_T0003/HCP_noise_snr_6/periodic_1_correlations} | ||
\caption{ | ||
Model TVFC estimates on dense trivariate data for $N = 400$ data points. | ||
HCP noise with SNR of 6 added. | ||
}\label{fig:results-d3d-periodic-1-tvfc-predictions-snr-6} | ||
\end{figure} | ||
|
||
|
||
\begin{figure}[h] | ||
\centering | ||
\includegraphics[width=\textwidth]{fig/sim/d3d/N0400_T0003/HCP_noise_snr_2/periodic_1_correlations} | ||
\caption{ | ||
Model TVFC estimates on dense trivariate data for $N = 400$ data points. | ||
HCP noise with SNR of 2 added. | ||
}\label{fig:results-d3d-periodic-1-tvfc-predictions-snr-2} | ||
\end{figure} | ||
|
||
|
||
\begin{figure}[h] | ||
\centering | ||
\includegraphics[width=\textwidth]{fig/sim/d3d/N0400_T0003/HCP_noise_snr_1/periodic_1_correlations} | ||
\caption{ | ||
Model TVFC estimates on dense trivariate data for $N = 400$ data points. | ||
HCP noise with SNR of 1 added. | ||
}\label{fig:results-d3d-periodic-1-tvfc-predictions-snr-1} | ||
\end{figure} | ||
|
||
|
||
%% | ||
\clearpage | ||
\section{Simulations: Trivariate TVFC estimates}\label{ch:appendix-d3-tvfc-estimates} | ||
%% | ||
|
||
|
||
\begin{figure}[ht] | ||
\centering | ||
\includegraphics[width=\textwidth]{fig/sim/d3s/N0400_T0003/no_noise/null_correlations} | ||
\caption{ | ||
Simulations benchmark single trial TVFC estimates for null covariance structure, for trivariate ($D = 3$) data for $N = 400$. | ||
}\label{fig:results-d3-no-noise-null-covariance} | ||
\end{figure} | ||
|
||
|
||
\begin{figure}[ht] | ||
\centering | ||
\includegraphics[width=\textwidth]{fig/sim/d3d/N0400_T0003/no_noise/periodic_1_correlations} | ||
\caption{ | ||
Simulations benchmark single trial TVFC estimates for periodic (fast) covariance structure, for dense trivariate ($D = 3$) data for $N = 400$. | ||
}\label{fig:results-d3s-no-noise-periodic-3-covariance} | ||
\end{figure} | ||
|
||
|
||
\begin{figure}[ht] | ||
\centering | ||
\includegraphics[width=\textwidth]{fig/sim/d3s/N0400_T0003/no_noise/periodic_3_correlations} | ||
\caption{ | ||
Simulations benchmark single trial TVFC estimates for periodic (fast) covariance structure, for dense trivariate ($D = 3$) data for $N = 400$. | ||
}\label{fig:results-d3s-no-noise-stepwise-covariance} | ||
\end{figure} | ||
|
||
|
||
%% | ||
\clearpage | ||
\section{Simulations: More quantitative results}\label{appendix:sim-more-quantitative-results} | ||
%% | ||
|
||
%% | ||
\subsection{Bivariate} | ||
%% | ||
|
||
|
||
\begin{figure}[ht] | ||
\centering | ||
\includegraphics[width=0.84\textwidth]{fig/sim/d2/N0120_T0200/no_noise/correlation_RMSE} | ||
\caption{ | ||
Simulations benchmark RMSE between model TVFC estimates and ground truth on all bivariate covariance structures with added rs-fMRI noise (SNR of 2) for $N = 120$. | ||
Means and standard deviations are shown across $T = 200$ trials. | ||
}\label{fig:results-sim-d2-120-no-noise-all-correlation-RMSE} | ||
\end{figure} | ||
|
||
|
||
\begin{figure}[ht] | ||
\centering | ||
\includegraphics[width=0.84\textwidth]{fig/sim/d2/N0200_T0200/no_noise/correlation_RMSE} | ||
\caption{ | ||
Simulations benchmark RMSE between model TVFC estimates and ground truth on all bivariate covariance structures with added rs-fMRI noise (SNR of 2) for $N = 200$. | ||
Means and standard deviations are shown across $T = 200$ trials. | ||
}\label{fig:results-sim-d2-200-no-noise-all-correlation-RMSE} | ||
\end{figure} | ||
|
||
|
||
\begin{figure}[ht] | ||
\centering | ||
\includegraphics[width=0.84\textwidth]{fig/sim/d2/N1200_T0200/no_noise/correlation_RMSE} | ||
\caption{ | ||
Simulations benchmark RMSE between model TVFC estimates and ground truth on all bivariate covariance structures with added rs-fMRI noise (SNR of 2) for $N = 1200$. | ||
Means and standard deviations are shown across $T = 200$ trials. | ||
}\label{fig:results-sim-d2-1200-no-noise-all-correlation-RMSE} | ||
\end{figure} | ||
|
||
|
||
%% | ||
\clearpage | ||
\subsection{Trivariate} | ||
%% | ||
|
||
|
||
\begin{figure}[ht] | ||
\centering | ||
\includegraphics[width=0.84\textwidth]{fig/sim/d3d/N0120_T0200/no_noise/correlation_matrix_RMSE} | ||
\caption{ | ||
Simulations benchmark RMSE between model TVFC estimates and ground truth on all dense trivariate covariance structures with added rs-fMRI noise (SNR of 2) for $N = 120$. | ||
Means and standard deviations are shown across $T = 200$ trials. | ||
}\label{fig:results-sim-d3d-120-no-noise-all-correlation-matrix-RMSE} | ||
\end{figure} | ||
|
||
|
||
\begin{figure}[ht] | ||
\centering | ||
\includegraphics[width=0.84\textwidth]{fig/sim/d3d/N0200_T0200/no_noise/correlation_matrix_RMSE} | ||
\caption{ | ||
Simulations benchmark RMSE between model TVFC estimates and ground truth on all dense trivariate covariance structures with added rs-fMRI noise (SNR of 2) for $N = 200$. | ||
Means and standard deviations are shown across $T = 200$ trials. | ||
}\label{fig:results-sim-d3d-200-no-noise-all-correlation-matrix-RMSE} | ||
\end{figure} | ||
|
||
|
||
\begin{figure}[ht] | ||
\centering | ||
\includegraphics[width=0.84\textwidth]{fig/sim/d3s/N0120_T0200/no_noise/correlation_matrix_RMSE} | ||
\caption{ | ||
Simulations benchmark RMSE between model TVFC estimates and ground truth on all sparse trivariate covariance structures with added rs-fMRI noise (SNR of 2) for $N = 120$. | ||
Means and standard deviations are shown across $T = 200$ trials. | ||
}\label{fig:results-sim-d3s-120-no-noise-all-correlation-matrix-RMSE} | ||
\end{figure} | ||
|
||
|
||
\begin{figure}[ht] | ||
\centering | ||
\includegraphics[width=0.84\textwidth]{fig/sim/d3s/N0200_T0200/no_noise/correlation_matrix_RMSE} | ||
\caption{ | ||
Simulations benchmark RMSE between model TVFC estimates and ground truth on all sparse trivariate covariance structures with added rs-fMRI noise (SNR of 2) for $N = 200$. | ||
Means and standard deviations are shown across $T = 200$ trials. | ||
}\label{fig:results-sim-d3s-200-no-noise-all-correlation-matrix-RMSE} | ||
\end{figure} |
Oops, something went wrong.