AI-powered climate intelligence platform for smart agriculture in Maharashtra, India. Features real-time weather forecasting, satellite imagery analysis, and multilingual support (English, Hindi, Marathi).
Website - Link -> https://clima-sense-ai-based-wheather-forec.vercel.app
- Professional authentication system powered by Clerk
- Email/password and social login (Google, GitHub)
- Secure session management
- User profile management
- Modern, engaging design with animations
- Clear value proposition and feature showcase
- Responsive design for all devices
- Smooth transitions and climate-themed visuals
- AgriBERT: Agricultural text classification and recommendations
- GraphCast: 10-day weather forecasting with agricultural metrics
- AgriSense MCP: Model Context Protocol server for AI agents
- CHIRPS: Satellite rainfall data
- OpenWeather: Live weather conditions
- Google Earth Engine: NDVI vegetation health index
- NASA POWER: Historical climate data
- 3D Globe with climate overlays
- Real-time satellite imagery
- Temperature, rainfall, and vegetation maps
- Maharashtra-focused regional data
- Natural language queries
- Weather forecasts for all Indian states
- Crop recommendations
- Pest control advice
- Responds in English, Hindi, or Marathi
- English - Default
- เคนเคฟเคเคฆเฅ (Hindi) - Full translation
- เคฎเคฐเคพเค เฅ (Marathi) - Full translation
- Instant language switching
- AI responses in selected language
- Node.js 18+ and npm
- Python 3.11+
- Git
start-climasense.batThis starts all services:
- โ AI Backend (FastAPI) - Port 8000
- โ AgriSense MCP Server - Port 9090
- โ GEE Server - Port 3001
- โ AI Forecast Server - Port 3002
- โ React Frontend - Port 5173
First Time Setup:
- Visit http://localhost:5173 (landing page)
- Click "Get Started" to create an account
- Sign up with email or social login
- Access the dashboard and all features
git clone https://github.com/Ontiomacer/Clima-Sense-AI---Based-Wheather-Forecasts.git
cd Clima-Sense-AI---Based-Wheather-ForecastsFrontend:
npm installAI Backend:
cd ai-backend
pip install -r requirements.txt
cd ..AgriSense MCP:
cd agrisense-mcp
npm install
npm run build
cd ..Create .env file in root:
# Clerk Authentication (Required)
VITE_CLERK_PUBLISHABLE_KEY=pk_test_your_clerk_publishable_key
# Supabase (for database)
VITE_SUPABASE_URL=your_supabase_url
VITE_SUPABASE_ANON_KEY=your_supabase_key
# Google Maps
VITE_GOOGLE_MAPS_API_KEY=your_google_maps_keyGet Clerk Keys:
- Sign up at clerk.com
- Create a new application
- Copy the publishable key from the dashboard
- See CLERK_SETUP.md for detailed instructions
Terminal 1 - AI Backend:
python ai-backend/main.pyTerminal 2 - AgriSense MCP:
cd agrisense-mcp
npm startTerminal 3 - Frontend:
npm run devTerminal 4 - GEE Server:
npm run gee-serverTerminal 5 - AI Forecast:
npm run ai-forecast- Landing Page: http://localhost:5173 (public)
- Dashboard: http://localhost:5173/dashboard (requires sign-in)
- AI Backend: http://localhost:8000
- AgriSense MCP: http://localhost:9090
- MCP Dashboard: http://localhost:9090/dashboard
Authentication:
- Visit the landing page and click "Get Started" or "Sign In"
- Create an account or sign in with Google/GitHub
- Access all features after authentication
- Deployment Documentation Index - Complete guide to all deployment docs
- Complete Deployment Guide - Comprehensive deployment instructions
- Vercel Deployment - Step-by-step Vercel setup
- Clerk Setup Guide - Complete Clerk authentication setup
- Environment Variables Setup - Detailed Clerk & Vercel configuration
- Quick Clerk Setup - Fast Clerk configuration
- Quick Start Guide - Get started in 5 minutes
- Changelog - Version history and updates
- Landing Page Documentation - Complete landing page guide
- Screenshots Guide - How to capture and manage screenshots
- Architecture Overview
- Setup Instructions
- AgriSense MCP Guide
- Language Support
- GraphCast Integration
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Frontend (React) โ
โ โโโโโโโโโโโโ โโโโโโโโโโโโ โโโโโโโโโโโโ โ
โ โDashboard โ โ Map โ โ AI Chat โ โ
โ โโโโโโฌโโโโโโ โโโโโโฌโโโโโโ โโโโโโฌโโโโโโ โ
โโโโโโโโโผโโโโโโโโโโโโโโผโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโ
โ โ โ
โโโโโโโโโโโโโโโผโโโโโโโโโโโโโโ
โ
โโโโโโโโโโโโโโโดโโโโโโโโโโโโโโ
โ โ
โผ โผ
โโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโโ
โ AI Backend โ โ AgriSense MCP โ
โ (FastAPI) โ โ (Node.js) โ
โ โ โ โ
โ โข AgriBERT โ โ โข HTTP API โ
โ โข GraphCast โ โ โข MCP Protocol โ
โ โข ERA5 Data โ โ โข Claude Desktopโ
โโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโโ
- React 18 with TypeScript
- Vite for build tooling
- TailwindCSS for styling
- Shadcn/ui component library
- React Router for navigation
- Tanstack Query for data fetching
- FastAPI (Python) for AI services
- Node.js/Express for MCP server
- PyTorch for ML models
- JAX for GraphCast
- Transformers for AgriBERT
- AgriBERT:
GautamR/agri_bert_classifier - GraphCast: DeepMind weather forecasting
- Custom: Agricultural metrics calculator
- CHIRPS: Climate Hazards Group
- OpenWeather: Weather API
- Google Earth Engine: Satellite data
- NASA POWER: Climate data
- Professional hero section with animated gradients
- Feature showcase with 6 key capabilities
- "How It Works" process explanation
- Statistics and metrics display
- Call-to-action sections
- Responsive design for all devices
- Real-time climate metrics
- AI Climate Risk Index
- Key insights and recommendations
- Temperature, rainfall, wind speed, NDVI
- Crop health analysis
- Soil moisture monitoring
- AI farming advisory
- Yield predictions
- 10-day GraphCast forecasts
- Agricultural risk scores
- Temperature extremes
- Rainfall predictions
- Satellite imagery layers
- CHIRPS rainfall visualization
- MODIS NDVI vegetation health
- ECMWF temperature anomalies
- Natural language queries
- Weather forecasts for Indian states
- Crop recommendations
- Multilingual responses
Switch between languages using the globe icon (๐) in the navigation bar.
Supported Languages:
- ๐ฌ๐ง English (Default)
- ๐ฎ๐ณ เคนเคฟเคเคฆเฅ (Hindi)
- ๐ฎ๐ณ เคฎเคฐเคพเค เฅ (Marathi)
What's Translated:
- โ All UI elements
- โ Navigation menus
- โ Form labels
- โ Dashboard metrics
- โ AI Chat responses
- โ Error messages
Model Context Protocol server for AI agents (Claude Desktop, GPT, etc.)
Features:
- Analyze crop data with AI models
- Calculate risk scores
- Generate farming recommendations
- Request logging and dashboard
Usage with Claude Desktop:
Add to %APPDATA%\Claude\claude_desktop_config.json:
{
"mcpServers": {
"agrisense": {
"command": "node",
"args": ["path/to/agrisense-mcp/dist/mcp-server.js"],
"env": {
"PORT": "9090",
"AI_BACKEND_URL": "http://localhost:8000"
}
}
}
}See CONNECT_TO_CLAUDE.md for details.
POST /api/agri_analysis
POST /api/graphcast_forecast
POST /api/analyze-farm
GET /api/health
POST /analyze
GET /dashboard
GET /health
# Clerk Authentication (Required)
VITE_CLERK_PUBLISHABLE_KEY=pk_test_your_clerk_publishable_key
# Supabase (for database)
VITE_SUPABASE_URL=your_supabase_url
VITE_SUPABASE_ANON_KEY=your_supabase_key
# Google Maps
VITE_GOOGLE_MAPS_API_KEY=your_google_maps_keyImportant: Clerk authentication is required for the application to work. See CLERK_SETUP.md for setup instructions.
Edit ai-backend/graphcast/config.py for:
- Model paths
- Cache settings
- Region boundaries
- Agricultural thresholds
# Frontend tests
npm test
# Backend tests
cd ai-backend
pytest
# MCP server tests
cd agrisense-mcp
npm testnpm run buildOutput in dist/ directory.
# Create virtual environment
python -m venv venv
source venv/bin/activate # Windows: venv\Scripts\activate
# Install dependencies
pip install -r ai-backend/requirements.txt
# Run with gunicorn
gunicorn -w 4 -k uvicorn.workers.UvicornWorker ai-backend.main:appcd agrisense-mcp
npm run build
npm start- ๐ Complete Deployment Guide - Comprehensive deployment instructions
- ๐ Vercel Deployment - Step-by-step Vercel setup
- ๐ Environment Variables Setup - Detailed guide for Clerk & Vercel
- โก Quick Clerk Setup - Fast Clerk configuration
-
Connect Repository
- Go to vercel.com
- Import your GitHub repository
- Framework: Vite
-
Configure Environment Variables
# Required for authentication VITE_CLERK_PUBLISHABLE_KEY=pk_test_your_clerk_key # Database VITE_SUPABASE_URL=your_supabase_url VITE_SUPABASE_ANON_KEY=your_supabase_key # Maps VITE_GOOGLE_MAPS_API_KEY=your_maps_key
๐ See CLERK_SETUP.md for Clerk setup ๐ See VERCEL_ENV_SETUP.md for detailed instructions
-
Deploy
- Click "Deploy"
- Automatic deployments on every push
-
Configure Clerk
- Add production domain to Clerk Dashboard
- Set redirect URLs
- Test authentication
- Create new service
- Connect repository
- Set Python buildpack
- Configure environment variables
- Deploy
# Build images
docker-compose build
# Start services
docker-compose up -dContributions are welcome! Please follow these steps:
- Fork the repository
- Create a feature branch (
git checkout -b feature/AmazingFeature) - Commit changes (
git commit -m 'Add AmazingFeature') - Push to branch (
git push origin feature/AmazingFeature) - Open a Pull Request
This project is licensed under the MIT License - see the LICENSE file for details.
- Ontiomacer - Initial work - GitHub
- DeepMind for GraphCast model
- Hugging Face for AgriBERT model
- Google Earth Engine for satellite data
- CHIRPS for rainfall data
- OpenWeather for weather API
- NASA POWER for climate data
- Documentation: See
/docsfolder - Issues: GitHub Issues
- Discussions: GitHub Discussions
- Professional landing page
- Clerk authentication integration
- Protected routes
- Social login (Google, GitHub)
- User profile management
- Mobile app (React Native)
- More Indian languages (Gujarati, Tamil, Telugu)
- Offline mode
- SMS alerts
- WhatsApp integration
- Farmer community features
- Marketplace integration
- Version: 1.0.0
- Status: Production Ready
- Last Updated: November 2025
Made with โค๏ธ for Indian farmers
๐พ Empowering agriculture through AI and climate intelligence