Skip to content
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion docs/source/user_guide/PSM_to_features.rst
Original file line number Diff line number Diff line change
Expand Up @@ -45,7 +45,7 @@ Next, load the PeptideIdentifications from an `.idXML` file:

.. code-block:: python

peptide_ids = []
peptide_ids = oms.PeptideIdentificationList()
protein_ids = []
oms.IdXMLFile().load(idxml_file, protein_ids, peptide_ids)

Expand Down
2 changes: 1 addition & 1 deletion docs/source/user_guide/export_files_GNPS.rst
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,7 @@ from your :py:class:`~.ConsensusMap` that have no :term:`MS2` spectra annotated.
filtered_map = oms.ConsensusMap(consensus_map)
filtered_map.clear(False)
for feature in consensus_map:
if feature.getPeptideIdentifications():
if feature.getPeptideIdentifications().size() > 0:
filtered_map.push_back(feature)

consensusXML_file = "filtered.consensusXML"
Expand Down
2 changes: 1 addition & 1 deletion docs/source/user_guide/export_pandas_dataframe.rst
Original file line number Diff line number Diff line change
Expand Up @@ -110,7 +110,7 @@ PeptideIdentification

urlretrieve(url + "small.idXML", "small.idXML")
prot_ids = []
pep_ids = []
pep_ids = oms.PeptideIdentificationList()
oms.IdXMLFile().load("small.idXML", prot_ids, pep_ids)

df = oms.peptide_identifications_to_df(pep_ids)
Expand Down
5 changes: 3 additions & 2 deletions docs/source/user_guide/identification_data.rst
Original file line number Diff line number Diff line change
Expand Up @@ -161,7 +161,8 @@ We can now display the peptides we just stored:
:linenos:

# Iterate over PeptideIdentification
peptide_ids = [peptide_id]
peptide_ids = oms.PeptideIdentificationList()
peptide_ids.push_back(peptide_id)
for peptide_id in peptide_ids:
# Peptide identification values
print("Peptide ID m/z:", peptide_id.getMZ())
Expand Down Expand Up @@ -193,7 +194,7 @@ discussed :ref:`anchor-other-id-data`) which we would do as follows:
oms.IdXMLFile().store("out.idXML", [protein_id], peptide_ids)
# and load it back into memory
prot_ids = []
pep_ids = []
pep_ids = oms.PeptideIdentificationList()
oms.IdXMLFile().load("out.idXML", prot_ids, pep_ids)

# Iterate over all protein hits
Expand Down
17 changes: 7 additions & 10 deletions docs/source/user_guide/interactive_plots.rst
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,7 @@ interactively zoomed-in if you execute the code in a notebook
exp.updateRanges()
expandcols = ["RT", "mz", "inty"]
spectraarrs2d = exp.get2DPeakDataLong(
exp.getMinRT(), exp.getMaxRT(), exp.getMinMZ(), exp.getMaxMZ()
exp.getMinRT(), exp.getMaxRT(), exp.getMinMZ(), exp.getMaxMZ(), 1
)
spectradf = pd.DataFrame(dict(zip(expandcols, spectraarrs2d)))
spectradf = spectradf.set_index(["RT", "mz"])
Expand Down Expand Up @@ -75,17 +75,14 @@ interactively zoomed-in if you execute the code in a notebook
min_alpha=0,
)
.opts(active_tools=["box_zoom"], tools=["hover"], hooks=[new_bounds_hook])
.opts( # weird.. I have no idea why one has to do this. But with one opts you will get an error
plot=dict(
width=800,
height=800,
xlabel="Retention time (s)",
ylabel="mass/charge (Da)",
)
)
)

hd.dynspread(raster, threshold=0.7, how="add", shape="square")
hd.dynspread(raster, threshold=0.7, how="add", shape="square").opts(
width=800,
height=800,
xlabel="Retention time (s)",
ylabel="mass/charge (Da)",
)


Result:
Expand Down
6 changes: 3 additions & 3 deletions docs/source/user_guide/other_ms_data_formats.rst
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@ You can store and load identification data from an `idXML` file as follows:
gh = gh = "https://raw.githubusercontent.com/OpenMS/pyopenms-docs/master"
urlretrieve(gh + "/src/data/IdXMLFile_whole.idXML", "test.idXML")
protein_ids = []
peptide_ids = []
peptide_ids = oms.PeptideIdentificationList()
oms.IdXMLFile().load("test.idXML", protein_ids, peptide_ids)
oms.IdXMLFile().store("test.out.idXML", protein_ids, peptide_ids)

Expand All @@ -31,7 +31,7 @@ You can store and load identification data from an `mzIdentML` file as follows:
gh = gh = "https://raw.githubusercontent.com/OpenMS/pyopenms-docs/master"
urlretrieve(gh + "/src/data/MzIdentML_3runs.mzid", "test.mzid")
protein_ids = []
peptide_ids = []
peptide_ids = oms.PeptideIdentificationList()
oms.MzIdentMLFile().load("test.mzid", protein_ids, peptide_ids)
oms.MzIdentMLFile().store("test.out.mzid", protein_ids, peptide_ids)
.. # alternatively: -- dont do this, doesnt work
Expand All @@ -48,7 +48,7 @@ You can store and load identification data from a TPP `pepXML` file as follows:
gh = gh = "https://raw.githubusercontent.com/OpenMS/pyopenms-docs/master"
urlretrieve(gh + "/src/data/PepXMLFile_test.pepxml", "test.pepxml")
protein_ids = []
peptide_ids = []
peptide_ids = oms.PeptideIdentificationList()
oms.PepXMLFile().load("test.pepxml", protein_ids, peptide_ids)
oms.PepXMLFile().store("test.out.pepxml", protein_ids, peptide_ids)

Expand Down
10 changes: 5 additions & 5 deletions docs/source/user_guide/peptide_search.rst
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,7 @@ a fasta database of protein sequences:
urlretrieve(gh + "/src/data/SimpleSearchEngine_1.mzML", "searchfile.mzML")
urlretrieve(gh + "/src/data/SimpleSearchEngine_1.fasta", "search.fasta")
protein_ids = []
peptide_ids = []
peptide_ids = oms.PeptideIdentificationList()
oms.SimpleSearchEngineAlgorithm().search(
"searchfile.mzML", "search.fasta", protein_ids, peptide_ids
)
Expand Down Expand Up @@ -143,9 +143,9 @@ ppm\ (\pm 2\ ppm)`, we expect that we will not find the hit at :math:`775.38` m/
salgo.setParameters(p)

protein_ids = []
peptide_ids = []
peptide_ids = oms.PeptideIdentificationList()
salgo.search("searchfile.mzML", "search.fasta", protein_ids, peptide_ids)
print("Found", len(peptide_ids), "peptides")
print("Found", peptide_ids.size(), "peptides")

As we can see, using a smaller precursor mass tolerance leads the algorithm to
find only one hit instead of two. Similarly, if we use the wrong enzyme for
Expand Down Expand Up @@ -189,7 +189,7 @@ Now include some additional decoy database generation step as well as subsequent

# Run SimpleSearchAlgorithm, store protein and peptide ids
protein_ids = []
peptide_ids = []
peptide_ids = oms.PeptideIdentificationList()

# set some custom search parameters
simplesearch = oms.SimpleSearchEngineAlgorithm()
Expand Down Expand Up @@ -224,7 +224,7 @@ This is done by applying one of the available protein inference algorithms on th
:linenos:

protein_ids = []
peptide_ids = []
peptide_ids = oms.PeptideIdentificationList()

# Re-run search since we need to keep decoy hits for inference
simplesearch.search(searchfile, target_decoy_database, protein_ids, peptide_ids)
Expand Down
2 changes: 1 addition & 1 deletion docs/source/user_guide/quality_control.rst
Original file line number Diff line number Diff line change
Expand Up @@ -43,7 +43,7 @@ proteomics and metabolomics quality metrics.
oms.FeatureXMLFile().load("features.featureXML", feature_map)

prot_ids = [] # list of ProteinIdentification()
pep_ids = [] # list of PeptideIdentification()
pep_ids = oms.PeptideIdentificationList() # list of PeptideIdentification()
# OPTIONAL: get protein and peptide identifications from idXML file
urlretrieve(gh + "/src/data/OpenPepXL_output.idXML", "ids.idXML")
oms.IdXMLFile().load("ids.idXML", prot_ids, pep_ids)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -141,7 +141,7 @@ Map :term:`MS2` spectra to features as :py:class:`~.PeptideIdentification` objec
if feature_map.getMetaValue("spectra_data")[
0
].decode() == exp.getMetaValue("mzML_path"):
peptide_ids = []
peptide_ids = oms.PeptideIdentificationList()
protein_ids = []
mapper.annotate(
feature_map,
Expand All @@ -161,10 +161,10 @@ Map :term:`MS2` spectra to features as :py:class:`~.PeptideIdentification` objec
prot_ids.append(prot_id)
fm_new.setProteinIdentifications(prot_ids)
for feature in feature_map:
pep_ids = []
pep_ids = oms.PeptideIdentificationList()
for pep_id in feature.getPeptideIdentifications():
pep_id.setIdentifier(f"Identifier_{i}")
pep_ids.append(pep_id)
pep_ids.push_back(pep_id)
feature.setPeptideIdentifications(pep_ids)
fm_new.push_back(feature)
feature_maps_mapped.append(fm_new)
Expand Down
1 change: 1 addition & 0 deletions requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@ scikit-learn
tabulate
requests
bokeh
jupyter_bokeh
datashader
holoviews
pyviz_comms
Expand Down
Loading