Skip to content

PRBonn/SfmPanOcc

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Vision-Based Panoptic Occupancy Prediction in Urban Environments

This repository contains the implementation of our paper.

Getting Started

  • Installation

  • Prepare data

  • Train

    # Single GPU
    python3 tools/train.py ./configs/sfmocc/sfmocc.py --panoptic
    
    # 8 GPUs
    ./tools/dist_train.sh ./configs/sfmocc/sfmocc.py --panoptic 8
  • Evaluation

    # Single GPU
    python3 tools/test.py ./configs/sfmocc/sfmocc.py ./path/to/ckpts.pth --panoptic
    
    # 8 GPUs
    ./tools/dist_test.sh ./configs/sfmocc/sfmocc.py ./path/to/ckpts.pth --panoptic 8
  • Visualization

    # Save predictions and images (select scene-id)
    python3 tools/test.py configs/sfmocc/sfmocc.py ./path/to/ckpt.pth --dump_dir=pred_dir --scene xxxx
    
    # Generate video (select scene-id)
    python3 tools/visualization/visual.py pred_dir/scene-xxxx

Acknowledgement

Many thanks to the authors of RenderOcc for the codebase.

Citation

@article{marcuzzi2026icra,
  title={},
  author={},
  journal={},
  year={2026}
}

Licence

Copyright 2026, Rodrigo Marcuzzi, Cyrill Stachniss, Photogrammetry and Robotics Lab, University of Bonn.

This project is free software made available under the MIT License. For details see the LICENSE file

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages