This repository contains the implementation of our paper.
-
Train
# Single GPU python3 tools/train.py ./configs/sfmocc/sfmocc.py --panoptic # 8 GPUs ./tools/dist_train.sh ./configs/sfmocc/sfmocc.py --panoptic 8
-
Evaluation
# Single GPU python3 tools/test.py ./configs/sfmocc/sfmocc.py ./path/to/ckpts.pth --panoptic # 8 GPUs ./tools/dist_test.sh ./configs/sfmocc/sfmocc.py ./path/to/ckpts.pth --panoptic 8
-
Visualization
# Save predictions and images (select scene-id) python3 tools/test.py configs/sfmocc/sfmocc.py ./path/to/ckpt.pth --dump_dir=pred_dir --scene xxxx # Generate video (select scene-id) python3 tools/visualization/visual.py pred_dir/scene-xxxx
Many thanks to the authors of RenderOcc for the codebase.
@article{marcuzzi2026icra,
title={},
author={},
journal={},
year={2026}
}Copyright 2026, Rodrigo Marcuzzi, Cyrill Stachniss, Photogrammetry and Robotics Lab, University of Bonn.
This project is free software made available under the MIT License. For details see the LICENSE file