Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
137 changes: 137 additions & 0 deletions backends/intel_hpu/kernels/strided_copy_kernel.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,137 @@
// Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "kernels/funcs.h"
#include "kernels/hpu_operator.h"
#include "utils/utils.h"

namespace custom_kernel {
struct ContiguousParams {
synStridedOpParams params;
};

class Contiguous : public HpuOperator {
public:
Contiguous() : HpuOperator("strided_view") {}

void AddNode(ConvertTensors& ct, ContiguousParams& params) {
auto inputs = ct.GetTensors();
auto outputs = ct.GetTensors(false);
std::vector<synTensor> syn_inputs;
syn_inputs.push_back(createTensor(inputs[0].dims.size(),
inputs[0].type,
inputs[0].dims,
true,
inputs[0].name));

std::vector<synTensor> syn_outputs;
syn_outputs.push_back(createTensor(outputs[0].dims.size(),
outputs[0].type,
outputs[0].dims,
true,
outputs[0].name));

synStatus status = synNodeCreate(graphHandle_,
syn_inputs.data(),
syn_outputs.data(),
syn_inputs.size(),
syn_outputs.size(),
&params.params,
sizeof(params.params),
guid_.c_str(),
"Contiguous",
nullptr,
nullptr);
PD_CHECK(
status == synSuccess, "[RUNTIME] synNodeCreate () failed = %d", status);
}
};

template <typename T, typename Context>
void StridedCopyKernel(const Context& dev_ctx,
const phi::DenseTensor& input,
const std::vector<int64_t>& dims,
const std::vector<int64_t>& out_stride,
int64_t offset,
phi::DenseTensor* out) {
phi::DenseTensorMeta meta = input.meta();

ContiguousParams params;
params.params.baseOffset = meta.offset / sizeof(T);

std::vector<int32_t> input_strides = phi::vectorize<int32_t>(meta.strides);
auto rank = input_strides.size();
for (size_t i = 0; i < rank; i++) {
params.params.strides[rank - 1 - i] = input_strides[i];
}
for (size_t i = rank; i < HABANA_DIM_MAX; i++) {
params.params.strides[i] = 0;
}
// calculate inputs dim
std::vector<int64_t> input_dims = phi::vectorize<int64_t>(meta.dims);
uint64_t lastElementOffset = 0;
for (size_t i = 0; i < rank; i++) {
lastElementOffset += input_strides[i] * (input_dims[i] - 1);
}
int64_t numOfInputElements = params.params.baseOffset + lastElementOffset + 1;

phi::DenseTensor flat_input(input);
phi::DenseTensorMeta fake_meta({input.dtype(), {numOfInputElements}});
flat_input.set_meta(fake_meta);

meta.dims = common::make_ddim(dims);
meta.strides = common::make_ddim(out_stride);
meta.offset = offset;
out->set_meta(meta);

dev_ctx.template Alloc<T>(out);

ConvertTensors ct;
ct.Add(flat_input);
ct.Add(out, false);

std::vector<DIMS> outputs_dims = ct.GetDims(false);
OpCacheOperator op_info;
op_info.prepareOpInfo<T, ContiguousParams>(
"StridedCopyKernel", outputs_dims, &params);
auto recipe = op_info.GetRecipe();

if (recipe == nullptr) {
Contiguous op;
op.AddNode(ct, params);
op.Compile();
op_info.setOp(op);
recipe = op_info.GetRecipe();
}

RecipeRunner runner(recipe);
auto tensors = ct.GetDeviceAddr();
runner.Run(reinterpret_cast<C_Stream>(dev_ctx.stream()), tensors);
}
} // namespace custom_kernel

PD_REGISTER_PLUGIN_KERNEL(strided_copy,
intel_hpu,
ALL_LAYOUT,
custom_kernel::StridedCopyKernel,
uint8_t,
int8_t,
bool,
int16_t,
int32_t,
int64_t,
float,
phi::dtype::float16,
phi::dtype::bfloat16,
phi::dtype::float8_e4m3fn) {}
Loading