-
Notifications
You must be signed in to change notification settings - Fork 512
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
6 changed files
with
119 additions
and
0 deletions.
There are no files selected for viewing
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,119 @@ | ||
# -*- coding: utf-8 -*- | ||
""" | ||
demo of Optimal transport for domain adaptation with image color adaptation as in [6] | ||
[6] Ferradans, S., Papadakis, N., Peyré, G., & Aujol, J. F. (2014). Regularized discrete optimal transport. SIAM Journal on Imaging Sciences, 7(3), 1853-1882. | ||
""" | ||
|
||
import numpy as np | ||
import scipy.ndimage as spi | ||
import matplotlib.pylab as pl | ||
import ot | ||
|
||
|
||
#%% Loading images | ||
|
||
I1=spi.imread('../data/ocean_day.jpg').astype(np.float64)/256 | ||
I2=spi.imread('../data/ocean_sunset.jpg').astype(np.float64)/256 | ||
|
||
#%% Plot images | ||
|
||
pl.figure(1) | ||
|
||
pl.subplot(1,2,1) | ||
pl.imshow(I1) | ||
pl.title('Image 1') | ||
|
||
pl.subplot(1,2,2) | ||
pl.imshow(I2) | ||
pl.title('Image 2') | ||
|
||
pl.show() | ||
|
||
#%% Image conversion and dataset generation | ||
|
||
def im2mat(I): | ||
"""Converts and image to matrix (one pixel per line)""" | ||
return I.reshape((I.shape[0]*I.shape[1],I.shape[2])) | ||
|
||
def mat2im(X,shape): | ||
"""Converts back a matrix to an image""" | ||
return X.reshape(shape) | ||
|
||
X1=im2mat(I1) | ||
X2=im2mat(I2) | ||
|
||
# training samples | ||
nb=1000 | ||
idx1=np.random.randint(X1.shape[0],size=(nb,)) | ||
idx2=np.random.randint(X2.shape[0],size=(nb,)) | ||
|
||
xs=X1[idx1,:] | ||
xt=X2[idx2,:] | ||
|
||
#%% domain adaptation between images | ||
|
||
# LP problem | ||
da_emd=ot.da.OTDA() # init class | ||
da_emd.fit(xs,xt) # fit distributions | ||
|
||
|
||
# sinkhorn regularization | ||
lambd=1e-1 | ||
da_entrop=ot.da.OTDA_sinkhorn() | ||
da_entrop.fit(xs,xt,reg=lambd) | ||
|
||
|
||
|
||
#%% prediction between images (using out of sample prediction as in [6]) | ||
|
||
X1t=da_emd.predict(X1) | ||
X2t=da_emd.predict(X2,-1) | ||
|
||
|
||
X1te=da_entrop.predict(X1) | ||
X2te=da_entrop.predict(X2,-1) | ||
|
||
|
||
def minmax(I): | ||
return np.minimum(np.maximum(I,0),1) | ||
|
||
I1t=minmax(mat2im(X1t,I1.shape)) | ||
I2t=minmax(mat2im(X2t,I2.shape)) | ||
|
||
I1te=minmax(mat2im(X1te,I1.shape)) | ||
I2te=minmax(mat2im(X2te,I2.shape)) | ||
|
||
#%% plot all images | ||
|
||
pl.figure(2,(10,8)) | ||
|
||
pl.subplot(2,3,1) | ||
|
||
pl.imshow(I1) | ||
pl.title('Image 1') | ||
|
||
pl.subplot(2,3,2) | ||
pl.imshow(I1t) | ||
pl.title('Image 1 Adapt') | ||
|
||
|
||
pl.subplot(2,3,3) | ||
pl.imshow(I1te) | ||
pl.title('Image 1 Adapt (reg)') | ||
|
||
pl.subplot(2,3,4) | ||
|
||
pl.imshow(I2) | ||
pl.title('Image 2') | ||
|
||
pl.subplot(2,3,5) | ||
pl.imshow(I2t) | ||
pl.title('Image 2 Adapt') | ||
|
||
|
||
pl.subplot(2,3,6) | ||
pl.imshow(I2te) | ||
pl.title('Image 2 Adapt (reg)') | ||
|
||
pl.show() |