To run the code, follow these steps:
- Clone this repository
- Open Julia and navigate to the repository (install Julia if necessary)
- Activate the project and instantiate the packages to the correct version by running
import Pkg Pkg.activate(".") Pkg.instantiate()
- Build RCall if not done previously
Pkg.build("RCall")
- Run the file
See the Julia documentation for more details on environments.
Fig1_introexample.jl
: Figure 1, a Thomas process example.Fig2_lgcp.jl
: Figure 2, a log-Gaussian Cox process example.Fig3_lansingwoods.jl
: Figure 3, analysis of the Lansing Woods data.Fig4_impulseresponse.jl
: Figure 4, the impulse responses for certain regions.
The folder src
contains a minimal implementation of the isotropic spectral estimation method proposed by Rajala et al. (2023).
Part of the simulation and the Lansing Woods data require the R
package spatstat
.
Note that R
and its packages are not version controlled by the Julia environment.
For convenience, we provide the file session_info.jl
which can be run from Julia to print the version of R
and spatstat
which is installed.
A summary of the package versions we used is given below (this is the relevant subset of the output from running sessionInfo()
, not the complete output)
R version 4.3.0 (2023-04-21)
Platform: x86_64-apple-darwin20 (64-bit)
Running under: macOS Ventura 13.3.1
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] spatstat_3.0-6 spatstat.linnet_3.1-1 spatstat.model_3.2-4
[4] rpart_4.1.19 spatstat.explore_3.2-1 nlme_3.1-162
[7] spatstat.random_3.1-5 spatstat.geom_3.2-1 spatstat.data_3.0-1
loaded via a namespace (and not attached):
[1] mgcv_1.8-42 Matrix_1.5-4 lattice_0.21-8
[4] splines_4.3.0 abind_1.4-5 polyclip_1.10-4
[7] deldir_1.0-9 goftest_1.2-3 spatstat.sparse_3.0-1
[10] grid_4.3.0 compiler_4.3.0 spatstat.utils_3.0-3
[13] tensor_1.5
Note that the methodology of the paper is in the package PointProcessFilters.jl
- Grainger, J. P., Rajala, T. A., Murrell, D. J., & Olhede, S. C. (2023). Visualizing the Wavenumber Content of a Point Pattern. arXiv preprint arXiv:2306.04198.
- T. A. Rajala, S. C. Olhede, J. P. Grainger, and D. J. Murrell, "What is the Fourier transform of a spatial point process?" IEEE Transactions on Information Theory, 2023.
- Jake P. Grainger. (2023). "SDS-EPFL/PointProcessFilters.jl: v0.1.0 (v0.1.0)." Zenodo. https://doi.org/10.5281/zenodo.8252035